تعداد نشریات | 23 |
تعداد شمارهها | 368 |
تعداد مقالات | 2,890 |
تعداد مشاهده مقاله | 2,566,211 |
تعداد دریافت فایل اصل مقاله | 1,821,868 |
Comparative study of leachate treatment by coagulation-flocculation process using iron-based coagulants: A case study on Souk-Ahras city | ||
Journal of Applied Research in Water and Wastewater | ||
دوره 8، شماره 1 - شماره پیاپی 15، شهریور 2021، صفحه 71-76 اصل مقاله (613.51 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22126/arww.2021.1817 | ||
نویسندگان | ||
Saliha Bouranene* 1؛ Khaled Djeffal2؛ Lotfi Zeghadnia3؛ Abdalhak Gheid1 | ||
11Faculty of Sciences and Technology, Department of process engineering, University of Mohamed Chérif Messaadia, Souk-Ahras, Algeria. 2Laboratory of Science and Technology of Water and Environment LST2E, Mohammed Chérif Messaadia University, Souk-Ahras, Algeria. | ||
21Faculty of Sciences and Technology, Department of process engineering, University of Mohamed Chérif Messaadia, Souk-Ahras, Algeria. 3Faculty of Sciences and Technology, Department of civil engineering, University of Abbès Laghrour, Khenchela, Algeria. | ||
31Faculty of Sciences and Technology, Department of process engineering, University of Mohamed Chérif Messaadia, Souk-Ahras, Algeria. 4Laboratory of Modeling and Socio-Economic Analysis in Water Science MASESE, Mohammed Chérif Messaadia University, Souk-Ahras, Algeria. | ||
چکیده | ||
The objective of this study was to evaluate the coagulation-flocculation process in the clarification of leachate from the landfill Technical Center of Souk-Ahras city using three coagulants based on iron: ferrous sulfate FeSO4.7H2O; ferrous chloride FeCl2.4H2O and ferric chloride FeCl3. The influence of some parameters namely pH leachate, dose and nature of coagulant and nature of flocculant was studied. The best treatment efficiency was obtained at 20 % of FeCl3 giving a turbidity of 4.09 NTU with pH adjustment of the raw leachate at acidic pH (3.5 ± 0.2) before coagulant addition and at a basic pH (7.5 ± 0.2) after addition of coagulant. The iron valence and the nature of anion at which is linked, played a determinant role in the clarification of leachate. The treatments made with ferric chloride in the presence of a flocculant have proved that the starch was more efficient than lime giving abatement rates of 99 % for COD and 85 % for BOD5. | ||
کلیدواژهها | ||
Coagulation-flocculation؛ Leachate؛ Iron؛ Starch؛ Lime | ||
مراجع | ||
Abrile M.G., Fiasconaro M.L., Orecchia D.S., Manzo R.M., Lovato M.E., Utilization of sludge derived from landfill leachate treatment as a source of nutrients for the growth of Nicotiana alata L, Journal of Environmental Management 289 (2021) 1-8. Achour S., and Guesbaya N., Coagulation-floculation par le sulfate d’aluminium de composés organiques phénoliques et de substances humiques (Coagulation-flocculation by aluminium sulphate of phenolic organic compounds and humic substances), Larhyss Journal 4 (2005) 153–168. Al-Malack M.H., Abuzaid N.S., El-Mubarak A.H., Coagulation of polymeric wastewater discharged by a chemical factory, Water Research 33 (1999) 521–529. Barrington S.F., Kaoser S., Shin M., Gélinas J.B., Precipitating swine manure phosphorus using fine limestone dust, Canadian Biosystems Engineering 46 (2004) 6-1. Bouranene S., Sedira N., Fievet P., Attia N., Treatment of paint wastewater by coagulation process, Filtration & Separation 52 (2015) 42-45. Cheng S.Y., Show P.L., Juan J.C., Chang J.S., Lau B.F., Lai S.H., Ng E.P., Yian H.C., Ling T.C., Landfill leachate wastewater treatment to facilitate resource recovery by a coagulation-flocculation process via hydrogen bond, Chemosphere 262 (2021) 1-9. Chiguer H., EL Khayyat F., EL Rhaouat O., Rifki R., Bensaid A., EL Kharrim K., Belghyti D., Evaluation de la charge polluante des lixiviats de la décharge contrôlée de la ville d’Essaouira (MAROC) (Evaluation of the Pollution Load of Leachates of the Controlled Landfill of Essaouira City (MOROCCO)), International Journal of Innovation and Applied Studies 14 (2016) 863–874. Chávez Porras A., Pinzon Uribe L.F., Velasquez Castiblanco, Y.L., Análisis comparativo de ensayos de Fitorremediación en lodos de lixiviado aplicando Análisis Envolvente de Datos (Comparative analysis of Phytoremediation tests in leachate sludge applying Data Envelopment Analysis), INGE CUC 13 (2017) 79–83. Djeffal K., Bouranene S., Fievet P., Déon S., Ghied A., Treatment of controlled discharge leachate by coagulation-flocculation: influence of operational conditions, Separation Science and Technology 56 (1) (2021) 168–183. Fatta D., Papadopoulos A., Loizidou M., A study on the landfill leachate and its impact on the groundwater quality of the greater area, Environmental Geochemical Health 21 (1999) 175-190. Fersi C., Ben Gamra A., Bozrati H., Gorgi C., Irmani A., Characterizing the performance of coagulation-flocculation using natural coagulants as pretreatment of tannery wastewater, Journal of Materials and Environmental Science 9 (2018) 2379-2386. Graupner de Godoy L.G., Rohden A.B., Garcez M.R., Da Dalt S., Bonan Gomes L., Production of supplementary cementitious material as a sustainable management strategy for water treatment sludge waste, Case Studies in Construction Materials 12 (2020) 1-10. Huang M., Liu Z., Li A., Yang H., Dual functionality of a graft starch flocculant: Flocculation and antibacterial performance, Journal of Environmental Management 196 (2017) 63-71. Jinghuan L., Guangren Q., Jianyong L., Zhi Ping X., Anaerobic methanogenesis of fresh leachate from municipal solid waste: A brief review on current progress, Renewable and Sustainable Energy Reviews 49 (2015) 21-28. Krentz D., Lohmann C., Schwarz S., Bratskaya S., Liebert T., Laube J., Heinze T., Kulicke W., Properties and flocculation efficiency of highly cationized starch derivatives, Starch–Stärke 58 (2006) 161-169. Liang L., Morgan J.J., Chemical aspects of iron oxide coagulation in water: Laboratory studies and implications for natural systems, Aquatic Sciences 52 (1990) 1015-1621. Madeira L., Almeida A., Teixeira M.R., Prazeres A., Chaves H., Fatima Carvalho F., Immediate one-step lime precipitation and atmospheric carbonation as pretreatment for low biodegradable and high nitrogen wastewaters: A case study of explosives industry, Journal of Environmental Chemical Engineering 8 (2020) 1-10. Majdy I., Cherkaoui E., Nounah A., Khamar M., The physico-chemical treatment by coagulation flocculation of wastewater discharges from the City of Sale, Journal of Materials and Environmental Science 6 (2015) 834-839. Martínez-Cruz A., Valencia M.N.R., Araiza-Aguilar J.A., Najera-Aguilar H.A., Gutierrez-Hernandez R.F, Leachate treatment: comparison of a bio-coagulant (Opuntia ficus mucilage) and conventional coagulants using multi-criteria decision analysis, Heliyon 7 (2021) 1-10. Monette F., Brière F.G., Létourneau M., Duchesne M., Hausler R., Traitement des eaux usées par coagulation–floculation avec recirculation des boues chimiques: Performance générale et stabilité du procédé (Waste water treatment by coagulation – flocculation with recirculation of chemical sludge: General performance and stability of the process), Canadian Journal of Civil Engineering 27 (2000) 702– 718. Önen V., Göçer M., Taner H.A., Effect of coagulants and flocculants on dewatering of kaolin suspensions, Journal of Engineering Science 7 (2018) 297-305. Prasad H., Lohchab R.K., Singh B., Nain A., Kumari M., Lime treatment of wastewater in a plywood industry to achieve the zero liquid discharge, Journal of Cleaner Production 240 (2019) 1-6. Sanphoti N., Towprayoon S., Chaiprasert P., Nopharatana A., The effects of leachate recirculation with supplemental water addition on methane production and wasted composition in a simulated tropical landfill, Journal of Environmental Management 81 (2006) 27–35. Spinosa L., and Doshi P., Re-thinking sludge management within the Sustainable Development Goal 6.2, Journal of Environmental Management 287 (2021) 112338. Suman M., Khaiwal R., Dahiya R.P., Chandra A., Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site, Environmental Monitoring and Assessment 118 (2006) 435-456. Teh C.Y., Wu T.Y., Juan J.C., Potential use of rice starch in coagulationflocculation process of agro-industrial wastewater: treatment performance and flocs characterization, Ecological engineering 71 (2014) 509-519 Vandamme D., Foubert I., Boudewijn M., Koenraad M., Flocculation of microalgae using cationic starch, Journal of Applied Phycology 22 (2010) 525-530. Xu Y., Liu T.C.Z., Zhu S., Cui F., Shi W., The impact of recycling Alumhumic- floc (AHF) on the removal of natural organic materials (NOM): Behavior of coagulation and adsorption, Chemical Engineering Journal (Amsterdam, Netherlands) 284 (2016) 1049–1057. Wais-mossa M.T., Mazet M., Adsorption d’acides humiques sur flocs d’hydroxydes d’aluminium: Influence de la taille des flocs et du sel d’aluminium (adsorption of humic acids on flocs of aluminium hydroxides: influence of floc size and aluminuim salt), Environmental Technology 12 (1991) 51–58. Wang S., Guo Y., Chen C., Zhang J., Gong Y., Wang Y., Supercritical water oxidation of landfill leachate, Journal of Waste Management 31 (2011) 2027–2035. Wei H., Ren J., Li A., Yang H., Sludge dewaterability of a starchbased flocculant and its combined usage with ferric chloride, Chemical Engineering Journal 349 (2018) 737-747. | ||
آمار تعداد مشاهده مقاله: 137 تعداد دریافت فایل اصل مقاله: 428 |