تعداد نشریات | 23 |
تعداد شمارهها | 383 |
تعداد مقالات | 3,036 |
تعداد مشاهده مقاله | 2,760,821 |
تعداد دریافت فایل اصل مقاله | 1,950,059 |
برآورد و بررسی تداخل حریمی چاه های بهره برداری جهت شناسایی مناطق آسیب پذیر آبخوان (مطالعه موردی: آبخوان سنجابی کرمانشاه) | ||
فناوری های پیشرفته در بهره وری آب | ||
مقاله 6، دوره 2، شماره 1، فروردین 1401، صفحه 85-102 اصل مقاله (1.7 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22126/atwe.2022.7582.1016 | ||
نویسندگان | ||
میلاد فرمانی فرد* 1؛ مهدی نجفی بیامه2؛ فرزانه محمدی3؛ فتح ا... محسنی پور4 | ||
1دانش آموخته دکتری آبیاری و زهکشی، کارشناس شرکت آب منطقه ای کرمانشاه، دفتر مطالعات پایه منابع آب، کرمانشاه، ایران. | ||
2دانش آموخته کارشناسی ارشد مهندسی معدن، کارشناس شرکت آب منطقهای کرمانشاه، معاونت حفاظت و بهرهبرداری، کرمانشاه، ایران. | ||
3دانش آموخته کارشناسی ارشد الکترونیک، کارشناس اداره کل فنی و حرفهای استان کرمانشاه، کرمانشاه، ایران. | ||
4دانش آموخته کارشناسی عمران آب زیرزمینی، کارشناس شرکت آب منطقهای کرمانشاه، دفتر مطالعات پایه منابع آب، کرمانشاه، ایران. | ||
چکیده | ||
در شرایط اقلیمی کشور، با توجه به حجم عظیم برداشت از منابع آب زیرزمینی توسط چاهها و نیز با در نظر گرفتن تعداد چاههایی خصوصاً در سنوات اخیر حفر گردیده، محاسبه حریم به منظور اعمال مدیریت صحیح بر حفظ و بهرهبرداری بهینه از منابع آب زیرزمینی از اهمیت ویژهای برخوردار است. در این راستا یکی از مسائل که دست اندرکاران حفاظت از آبهای زیرزمینی را به خود مشغول کرده، تراکم و نزدیکی چاههای بهره برداری از یک سو و اضافه برداشت توسط بهرهبرداران از سوی دیگر میباشد. از این رو؛ در این تحقیق، در ابتدا تابع چاه حل ریاضی گردیده و شعاع تأثیر هر یک از چاهها در دو حالت اعمال دبی اصلاحی (بر اساس سطح زیر کشت) و دبی پروندهای (دبی پروانه بهرهبرداری) بدست آمد. سپس نقشه شعاع تأثیر کل چاههای محدوده ترسیم و سپس نواحی دارای تداخل حریمی مشخص و ترسیم گردید. بر اساس نتایج بدست آمده متوسط دبی آبکشی کل چاههای بهرهبرداری در حالت دبی اصلاحی و پروندهای به ترتیب 37/18 و 14/11 l/s محاسبه گردید که نتیجه این تفاوت دبی آبکشی در اختلاف کل مساحت تداخل حریمی به میران 30 درصد (6/116 کیلومتر مربع) بدست آمد. همچنین نتایج نشان داد در خوشبینانهترین حالت، قریب 20% از کل مساحت آبخوان دارای تداخل حریمی میباشد. این مسئله باعث میشود هنگام بهره برداری همزمان از چاههای همجوار، مخروطهای شدید افت ایجاد شده و آبخوان تحت استرسهای غیرمعمول قرارگیرد که در طولانی مدت موجب ایجاد افت دائمی و ماندگار در آبخوان و در بلند مدت منتج به فرونشت زمین گردد. | ||
کلیدواژهها | ||
منابع آب زیرزمینی؛ اضافه برداشت؛ تداخل حریم؛ چاه های بهره برداری کشاورزی؛ آبخوان روانسر-سنجابی | ||
مراجع | ||
بهرامی، مهدی.، رجبی، سارا.، و جاویدی آل سعدی، محمدحسین. (1400). ارزیابی روشهای مختلف محاسبه شعاع تاثیر چاه. پنجمین کنگره ملی آبیاری و زهکشی ایران، بیرجند. https://civilica.com/doc/1250765
رشیدی، حمید. (1380). قانون توزیع عادلانه آب در آیینه حقوق ایران. جلد اول، مالکیت عمومی آب، آبهای زیرزمینی و آبهای سطحی، انتشارات دادگستر.
زمانی مقدم. محمد قدیر.، مریدی، علی.، و یزدی، جعفر. (1399). تعیین حریم کیفی چاههای آب شرب با درنظر گرفتن پتانسیل آسیبپذیری آبخوان. مجله تحقیقات منابع آب ایران، 16(1)، 16-1. https://dorl.net/dor/20.1001.1.17352347.1399.16.1.1.5
سروری، محمدرضا.، چیت سازان، منوچهر. (1387). بررسی حریم فنی تداخل مخروط افت چاه در دشت جایزان جهت جلوگیری از ایجاد یافت شدید در آبخوان منطقه. سومین کنفرانس مدیریت منابع آب ایران، دانشگاه تبریز. https://civilica.com/doc/50281
کاهش سطح آبهای زیرزمینی(1390). مجله نشنال جئوگرافیک. https://waterstudent.blogsky.com
مسلمی عقیلی، نسیم السادت.، کرمی، غلامحسین.، و یخکشی، ابراهیم. (1395). بررسی آماری تاثیر چاههای آب بر یکدیگر در یک مجموعه چاه، مطالعه موردی منطقه گرمابدشت- سیاهتلو (گرگان). مجله پژوهشهای حفاظت آب و خاک، 23(5)، 317-324. https://dx.doi.org/10.22069/jwfst.2017.10646.2509
An, Karen. (2015). Investiging the Ralationship between LanduSubsidance and Groundwater Depletion inather Norto Plaina Using GRACEA and WICES. Master's Thesis, h Univeversity Kofa California, Los Angeles. Bahrami, M., Rajabi, S., & Javidi Al Saadi, M.H. (2021). Evaluate different methods of calculating the impact radius of a well. Fifth National Congress of Irrigation and Drainage of Iran, Birjand. https://civilica.com/doc/1250765 [Persian] Bordbar, M., Neshat, A.R., & Javadi. S. (2019). Modification of the GALDIT framework using statistical and entropy models to assess coastal aquifer vulnerability. Hydrological Sciences Journal, 64 (9), 1117–1128. https://doi.org/10.1080/02626667.2019.1620951 Boulton, N.S., & Streltsova, T.D. (1976). The drawdown near an abstraction of large diameter under non-stady state condition in unconfined aquifers. Journal of Hydrology, 30, 29-46. https://trid.trb.org/view/53810 Cong-Thi, D., Dieu, L.P., Thibaut, R., Paepen, M., Ho, H.H., Nguyen, F., & Hermans, T. (2021). Imaging the Structure and the Saltwater Intrusion Extent of the Luy River Coastal Aquifer (Binh Thuan, Vietnam) Using Electrical Resistivity Tomography. Water, 13(3), 1743. https://doi.org/10.3390/w13131743 Dragoni, W. (1998). Some consideration regarding the radius of influence of a pumping well. Perugia Italy. Faunt, C.C., Sneed. M., Traum. J., & Brandt, J.T. (2015), Water availability and LandnSubsidance in the Central Valley, California, USA. Hydrogeol journal, 24(1), 675-684. https://doi.org/10.1007/s10040-015-1339-x Focazio, J.R., & Speiran, G.K. (1993). Estimating net drawdown resulting from episodic withdrawals at six well fields in the Coastal plain physiographic province of Virginia, U.S. https://doi.org/10.3133/wri934159 Galloway, D.L., Jones, D.R., & Ingebritsen, S.E. (1999). Land subsidence in the United States. U.S., Geological Survey Circular 1182. Geological Survey water-resources investigations report 93-4159. https://doi.org/ 10.3133/cir1182 Larson, K.J., Barasaoslu, H., & Mariño, M.A. (2001). Prediction of optimal safe groundwater yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model. Journal Hydrology, 242, 79–102. https://doi.org/10.1016/S0022-1694(00)00379-6 Manivanna, V., & Elango, L. (2019). Seawater intrusion and submarine groundwater discharge along the Indian coast. Environmental Science and Pollution Research, 26. Mosallami, N., Karami, G., & Yakhkeshi, E. (2016). A statistical study on the effect of water wells on each other in a well field, case study the region of Garmabdasht-Siahtalu (Gorgan). Journal of Water and Soil Conservation, 23(5), 317-324. https://dx.doi.org/10.22069/jwfst.2017.10646.2509 [Persian] Nyman, D.J. (1965). Predicted hydrologic effects of pumping from the Lighterman well field in the Memphis area, Tennessee. Geological survey water-supply 1819-B. https://doi.org/ 10.3133/wsp1819B Rashidi, H. (2001). Law on Fair Distribution of Water in the Mirror of Iranian Law. Volume One, Public Ownership of Water, Groundwater and Surface Waters, Justice Publications. [Persian] Reducing the groundwater level.(2011). National Geographic magazine. http://waterstudent.blogsky.com [Persian] Russell, M.J. (2006). A Simplified Technique for Well-Field Design. Article first published online. https://doi.org/ 10.1111/j.1745-6584. 1969.tb01277. x Sarvari, M., & Chitsazan, M. (2008). Examine the technical limits and interfere cone drop in the plains wells permissible to prevent a sharp drop in the aquifer area. The Third Conference of Iran Water Resources, University of Tabriz. https://civilica.com/doc/50281 [Persian] Smith, R.P.G., Knight. R., Chen, J., Reeves, J.A., Zebker, H. Ao., & Farr Tuand Liu, Z. (2017). Estimating the permanent loss of groundwater storage southern Sany Joaquin Valley, California, Water Resources Research journal, 53, 2133-2148. https://doi.org/10.1002/2016WR019861 Trinh, M.T., & Fredlund, D.G. (2000). Modelling subsidence in the Hanoi City area, Vietnam. Canadian geotechnical journal, 37 (3), 621–637. Walton, W.C. (1962). Selected analytical methods for well and aquifer evaluation. Illinois State Water Survey Bulletin 39. https://hdl.handle.net/2142/94577 Wilson, C.P.V. (1982), Groundwater Hydrology (2nd edn) by D. K. Todd. Wiley, New York. https://www.yumpu.com/en/document/view/26396235 Zamani Moghadam, M. Gh, Moridi, A., & Yazdi, J. (2020). Determining the Groundwater Quality Protection Zone by Considering the Vulnerability of Aquifer. Iran- Water Resources Research, 16(1), 1-16. https://dorl.net/dor/20.1001.1.17352347.1399.16.1.1.5 [Persian] Zghibi, A., Merzougui, A., Mansaray, A.S., Mirchi, A., Zouhri, L., Chekirbane, A., Msaddek, M. H., Souissi, D., Mabrouk-El-Asmi, A., & Boufekane, A. (2022). Vulnerability of a Tunisian Coastal Aquifer to Seawater Intrusion : Insights from the GALDIT Model. Water, 14(7), 1177. https://doi.org/10.3390/w14071177 | ||
آمار تعداد مشاهده مقاله: 237 تعداد دریافت فایل اصل مقاله: 230 |