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In this paper, we present a method to perform flood frequency analysis (FFA) 
when the assumption of stationary is not important (or not valid). A wavelet 
transform model was developed to FFA. A full series was applied to FFA using 
two different wavelet functions, and then a combined method was investigated. In 
the combined method, all discharge data which were less than the lowest value of 
annual maximum (AM) discharge were removed. Furthermore, energy function of 
wavelet was used for FFA. The data was decomposed into some details and an 
approximation through different wavelet functions and decomposition levels. The 
approximation series was employed to FFA. This was performed using discharge 
data from of the Polroud River in Iran. This analysis was performed on the daily 
maximum discharge data from the Tollat station in the north of Iran. Data from 
1975 to 2007 was evaluated by the wavelet analysis. The study shows that the 
wavelet full series model results (density function) are too small in compared with 
the results of combined method and they are both lesser than traditional methods 
(AM and PD). On the other hand, the results of energy function method were 
closed to the combined method when they are compared with the full series data 
results. These wavelet models were assessed with the AM and PD methods. The 
concrete result of this paper is that, the basin hydrologic conditions and data's 
nature are very important parameters to improve FFA and to select the best 
method of analysis. 

© 2015 Razi University-All rights reserved. 
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1. Introduction 

 
Despite over half a century of research on flood frequency 

analysis (FFA), the new methods continuously are being presented in 
this important branch of hydrology, which indicates its importance. 
Hence, increasing the accuracy in this area has been considered by 
many researchers. Stationary data is used in most of traditional 
methods such as annual maximum (AM) and partial duration (PD). 

Hydrologic systems are sometimes impacted by extreme events 
as severe storms, floods and droughts. The magnitude of an extreme 
event is inversely related to its occurrence frequency; very severe 
events occur less frequently than more moderate events. The 
objective of frequency analysis of hydrologic data is to relate 
magnitude of extreme events to their frequency of occurrence through 
the use of probability distributions. The hydrologic data analyzed are 
assumed to be independent and identically distributed; and the 
hydrologic system producing them (e.g., a storm rainfall system) is 
considered to be stochastic space independent, and time independent 
in the classification scheme. The hydrologic data employed should be 
carefully selected so that the assumptions of independence and 
identical distribution are satisfied. In practice, this is often achieved by 
selecting the annual maximum (AM) of the variable being analyzed 
(e.g., the AM discharges, which is the largest instantaneous peak flow 
occurring at any time during the year) with the expectation that the 
successive observations of this variable from year to year will be 
independent (Chow et al. 1988). 

The main aim of the FFA in hydrology is to determine the 
relationship hydrograph-return period. Until now, most of literatures 

investigated the flood peak univariate statistical procedures. However, 
concerning hydraulic works above all for flooding and inundation 
management, it is not enough to know information about flood peak 
only, but it is also useful to statistically estimate flood volume and 
duration. In order to have this information, joint cumulative distribution 
function (CDF) and probability density function (PDF) of involved 
variables is needed, and so multivariate statistical analysis has to be 
applied (Box et al. 1964). 

Flood frequency analysis (FFA) has a major role to prevent from 
damages to establishment. Considering the irreparable damages of 
inattention to FFA, in last half of century, many different methods were 
presented in this branch of hydrology studies. Most of these 
approaches are based on statistical distributions. Such as these 
approaches was presented by Chow and his colleagues in applied 
hydrology. 

A major shift in approaches to the management of flooding is now 
underway in many countries worldwide. This shift has been simulated 
by severe floods, for example on the Oder (Odra. 1997), Yangtze 
(1998), Elbe (Labe. 2002), Rhone (2003), in New Orleans (2005), on 
the Danube (2006) and in the UK (2000, 2007 and 2009) (Rossi et al. 
2011). 

Flood risk management is the process of decision making under 
uncertainty. It involves the purposeful choice of flood risk 
management that are intended to reduce flood risk (Rossi et al. 2011). 

Traditional approaches to flood forecasting involve multi-
dimensional mathematical models extensively based on underlying 
physical principles. In contrast, machine learning algorithms are data-
driven methods whereby models are inferred directly from a database 
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of training examples. Consequently, the incorporation of background 
knowledge, in the form of an understanding of the hydrology of the 
system being studied, only takes place indirectly through, for example, 
the choice of input variables to the artificial intelligence (AI) algorithm, 
or through the identification of an appropriate lead time for prediction. 
For this reason, data-driven models are sometimes referred to as 
being 'black box' (Abu and Sung. 2011). 

Post-event analysis of any particular flood event will reveal that 
both the rainfall and snowmelt inputs that caused it and the effects in 
terms of areas flooded and damaged caused will be spatially variable 
or distributed in nature. The hydrology and hydraulics of the event will 
reflect the heterogeneities in the driving variables and catchment and 
channel characteristics. The distributed nature of the process is 
important, and the logical consequence is that in trying to predict flood 
events for flood management we should use distributed models 
whenever local distributed inputs interact with local nonlinear 
processes to produce responses where the distributed impacts might 
be significant (Petersen Olivier et al. 2009). 

In recent 6 decades, many researches and studies were 
performed on FFA and its related branches. These researches and 
studies include several different methods from traditional methods, 
such as using AM and PD data, index flood, etc. to newer methods 
such as self-organization feature map, fuzzy clustering, regional FFA 
(RFFA), etc. The last subject is most considered in last decades. 
Below, previous researches and studies about these methods are 
presented. 

Different types of probability distributions are one of the most 
usage and popular method in FFA. Most of researchers were working 
on developing this approach. In most of experimental projects, this 
method of FFA is used, in past and today. Some of researches are 
reviewed types of this method and was discussed about them (Jim 
and Edmund. 2011). 

FFA in urban watersheds is complicated by non-stationary of 
annual peak records associated with land use change and evolving 
urban stormwater infrastructure. A framework for FFA is developed 
based on Generalized Adaptive Models for Location, Scale and Shape 
parameters (GAMLSS), a tool for modeling time series under non-
stationary conditions. GAMLSS is applied to AM peak discharge 
records for Little Sugar Greek, a highly urbanized watershed which 
drains the urban core of Charlotte, North Carolina. It is shown that 
GAMLSS is able to describe the variability in the mean and variance 
of the AM peak discharge by modeling the parameters of the selected 
parametric distribution as a smooth function of time via cubic splines 
(Shu et al. 2008). 

In another paper the joint impact of sample variability and rating 
curve impression in at-site FFA was considered. A novel likelihood-
based framework is developed for this purpose, amusing the power-
law model for the stage-discharge measurement and generalized 
extreme value (EV) model for the AM discharges. It shows that the 
two models can be pooled into one likelihood function (Guilan 
Regional Water Company, Research Committee. 2011). 

Kale provided a synoptic view of extreme monsoon floods on all 
the nine large rivers of South Asia and their association with the 
excess (above-normal) monsoon rainfall periods. Simple techniques 
such as the Cramer's t-test, regression and Mann-Kendall (MK) tests 
and Hurst method were used to evaluate the trends and patterns of 
the flood and rainfall series (Adamowski. 2008, Heo et al. 2001). 

At other study, the gradients of trends in the mean and the 
standard deviation (SD) are estimated by the weighted least squares 
method and the best fitting linear model of trend is with the aid of the 
Akaike Information Criterion (AIC). It shows that for every time series, 
a trend in the variance has a considerable effect on the trend 
estimators of the mean value. The analysis also includes seasonal 
peak flow series in order to obtain further insight into the detected 
non-stationary of the peak flows series (Adamowski and Fung Chan. 
2011). 

In other research, was examined the methods and approaches 
available in long-term flood seasonality analysis and applies them to 
the river Ouse (Yorkshire) in Northern England Since AD 1600. A 
detailed historical flood record is available for the city of York 
Considering of annual maximal flood level since AD 1877, with 
documentary accounts prior to this (Ravnik et al. 2004; Lawry et al. 
2011). 

RFFA has become a standard practice for determining flood 
quantiles at ungagged locations or at sites with short records. RFFA is 
the most popular method in FFA for watersheds that have not enough 
data for FFA. This method was used frequently and developed in last 

decades. Some of studies about this branch of FFA were presented 
below.  

At first part of a study with 2 parts, a two parameter Weibull 
distribution with independence in both time and space was selected 
as a RF model and analyzed based on an index flood assumption. 
The method of maximum Likelihood (ML), the method of Moment 
(MOM), and the method of probability weighted moments (PWMs) 
were used to estimate flood quantiles at a site of interest (Zhang et al. 
2006). In the second part of this study, flood quantile estimates 
determined from flood data at a single site have limited precision 
because ordinarily the available sample size is small. To improve the 
precision of such quantile estimates, an index flood technique has 
been employed enabling one to use available flood data at several 
sites in a region computer simulation experiments were performed in 
order to compare the sample properties of quantile estimates obtained 
based on the ML, MOM, and PWM methods and to determine the 
probability of the asymptotic variances obtained for each method for 
finite samples (Ozger et al. 2010). 

In another study of RFFA, was compared Bayesian Generalized 
Least Squares (BGLS) regression approaches using a fixed and 
region-of-influence (ROI) framework that seeks to minimize the 
Bayesian model error variance (predictive uncertainty) (Haddad et al. 
2012). 

Shu and Ouarda presented the methodology of using adaptive 
neuro-fuzzy interface systems (ANFIS) for flood quantile estimation at 
ungagged sites (Macdonald et al. 2012). A regionalized relationship to 
estimate flood magnitudes for ungagged and poorly gauged 
catchments can be established using RFFA. RFFA was performed in 
this study using fuzzy c-mean, L-moment and artificial Neural network 
(ANN) (Lecrec and Ouarda. 2007). 

Some of the other researchers performed RFFA using different 
methods and approaches, such as index- flood, combining self-
organizing feature map and fuzzy clustering, GEV model (Pellegrini et 
al. 2012; Heo et al. 2001; Beven. 2011). 

Up to now, we were considered to several common methods in 
FFA, but some other methods are being used in analysis, one of these 
methods is fuzzy expert system (FES). In Shu and Burn paper, the 
performance of the FES is improved by tuning of the membership 
functions of the fuzzy sets using a genetic algorithm (GA) (Quiroz et 
al. 2011). 

We couldn't find any study in FFA by wavelet transform, but many 
studies have been done using wavelet transform in different branches 
of sciences involve hydrology and others (Patral et al. 2007; Shrinivas 
et al. 2008; Nourani et al. 2009; Chow et al. 2013; Vishwas et al. 
2011; Strupczewski et al. 2001). One of these studies in hydrology is 
a large set of monthly precipitation data from 43 stations throughout 
Texas that was employed to investigate the spatial variability in the 
multi-scaling properties of wet and dry spells. Rainfall data from 
stations scattered across a very large size of data are analyzed by 
using a multi-scaling approach. Wavelet spectrum maps are 
interpreted considering different scale behavior of stations. It is found 
that stations show different scaling properties in terms of their wet and 
dry spells (Golizadeh et al. 2011). 

Many studies and researches in FFA indicate the importance of 
this very important branch of hydrology. Damages of recent huge 
floods in the world indicate the result of inattention to this nature 
phenomena or mistakes in estimate of flood risk. So that many 
researchers were tried to make the better estimation of flood risk in 
last decades. 

 
2. Case Study (Polroud basin) 

 
FFA was performed on Polroud River in north of Iran (Guilan 

province). Polroud is located in the east of Guilan and it is the most 
important river in this region as sometimes east of Guilan basin was 
called Polroud basin. Fig. 1 shows the satellite picture of Polroud 
basin with two hydrometric stations (note: this picture is rotated about 
45 deg. clockwise). Table 1 shows a summary of Polroud river 
characters. 

Although the Manjil (Sefidroud) dam on Sefidroud River is the 
main source of Guilan water demand, but so it is distance to east of 
Guilan lands is far that so using Polroud River for supply of water 
demand is inevitable. In Polroud basin two main stations on two 
branch of this river has been established. Fig. 1 shows these two 
stations, Haratbar and Tollat. Table 2 shows the characters of these 
stations (Shu et al.  2004; Villarini et al. 2009; The Math Works. 2009. 
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MATLAB, Version 7.8.0.347). In this paper, 52 years discharge data of 
Tollat station was used. 
 
3. Wavelet transform 

 
The wavelet transform has increased in usage and popularity in 

recent years since its inception in the early 1980s, yet scientists still 
do not enjoy the widespread usage of the Fourier transform 
(Subramanya et al. 2008). 

Fig. 2 shows a schematic form of wavelet transform (Gubareva et 
al. 2011). The time-scale wavelet transforms of a continuous-time 
signal, x(t), is defined as: 

 

 
1

, ( )
t b

T a b x t dt
aa

g
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
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Table 1. Characters of Polroud river and its basin (GRWC. 2011). 

Features quantity/quality 

Length 51 km 
basin area 1765 km

2 

origin  south of Alborz mountains 
River delta Caspian sea 

River annual stream flow 472*10
6
 m

3 

 

 
Table 2. Characters of stations on Polroud river (GRWC. 2011). 

River (branch) Station Height(m) establishing date Basin area (km
2
) Longitude Latitude 

 Polroud Tollat 113 1335 1574 50˚17'30'' 36˚59'41'' 

Samoush Haratbar 123 1336 115 50˚18'11'' 36˚59'53'' 

 
  

 
 

 
              Fig. 1. The position of Polroud River. 

   

 
 
 
 
 
 
where, * corresponds to the complex conjugate and g(t) is called 
wavelet function or mother wavelet. The parameter "a'' acts as 
adilation factor, while "b" corresponds to a temporal translation of the 
function g(t), which allows the study of the signal around "b". The 
characters of wavelet transform are to provide a time-scale 
localization of processes, which derives from the compact support of 
its basic function. This is opposed to the classical trigonometric 
function of Fourier analysis. The wavelet transform searches for 
correlations between the signal and wavelet function.  This calculation 
is done at different scales of "a" and locally around the time of "b". The 
result is a wavelet coefficient (T(a, b)) contour map known as a  
scalogram. In order to be classified as a wavelet, a function must have 
finite energy, and it must satisfy the following ‘‘admissibility 
conditions’’: 

 

2

0,
ˆ( )

g
g t dt dw

w

g w
C

 

 

    
  

 
where, gˆ(w) is Fourier transform of g(t); i.e. the wavelet must have no 
zero frequency component. In order to obtain a reconstruction formula 
for the studied signal, it is necessary to add ‘‘regularity conditions’’ to 
the previous ones. 
 

  0, 1,2,..., 1
k
g t dt where k nt


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Fig. 2. Schematic showing of wavelet transform. 
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So the original signal may be reconstructed using the inverse 
wavelet transform as (Subramanya. 2008): 
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Two functions were existed that have main role in wavelet 

analysis: scale function (φ) and wave function (ψ). These two 
functions are produced a collection of functions that is used in 
decomposition or reconstruction of a signal. φ and ψ called  father and 
mother wavelet, respectively (Kjeldsen et al. 2002). Two wavelet 
functions that used in this study were introduced briefly. 

 
3.1. Haar 

 
Any discussion of wavelets begins with Haar wavelet, the first and 

simplest. Haar wavelet is discontinuous, and resembles a step 
function. It represents the same wavelet as Daubechies db1 

(Gubareva et al. 2011). The simplest wavelet analysis is based on 
Haar scale function. The Haar scale function is shows as: 
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0 [0,1]

x if x
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Haar wavelet is discontinuous and similar step function. Haar 

function is like Daubechies1 function. The (7) to (9) show Haar wave 
function:  
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Fig. 3 and Fig. 4 show the Haar wave and scale functions, 

respectively. 
 

 

 
 

Fig. 3. Haar wave function. 

 
 

Fig. 4. Haar scaling function

 
 

3.2. Daubechies10 
 
At first of using wavelet, Daubechies wavelets with some other by 

similar characteristics were only available wavelets. The simplest is 
Haar wavelet exactly that only discontinues wavelet in all of them. The 
other wavelets in this family are continues (Kjeldsen et al. 2002). 

Ingrid Daubechies, one of the brightest stars in the world of 
wavelet research, invented what is called compactly supported 
orthonormal wavelet, thus making discrete wavelet analysis 
practicable.  

 
 

The names of the Daubechies family wavelets are written dbN, 
where N is the order, and db is the "surname" of the wavelet. The db1 
wavelet, as mentioned above, is the same as Haar wavelet (Gubareva 
et al. 2011). 

The most of these family functions are not symmetric but 
dissymmetric of some these are deterministic. Functions regularity of 
this family is increased with increasing their orders. This family is 
orthogonal also (Gubareva et al. 2011). 

Many researchers and scientist were believed Daubechies is the 
most exact functions in wavelet functions for analyzing of natural 
phenomena. Fig. 5 and Fig. 6 show the Daubechies10 wave and 
scale functions, respectively.  

 

 

  
 

Fig. 5. Dubechies10 wave function. 
 

Fig. 6. Daubechies10 scaling function. 
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4. Materials and methods 

In this study FFA using wavelet transform has been considered. 
For this purpose a full series of Tollat discharge data was used for 
making wavelet model. For this purpose, time period of study has 
been reduced from 52 years to about 33 years. Fig. 7 shows this 
signal, it contained more than 12000 data. 
 
After making signal, next step is selection of wavelet function and its 
decomposition level. When is used wavelet transform, selection of 
wavelet function and decomposition optimized level is so important. 
One of the important and base points is choosing mother wavelet 
based on phenomena natural and series type. So each mother 
wavelet function pattern that make a better set adaption in geometry 
aspect to time series, gets better results. In this paper furthermore this 
important case, density function form of wavelet modeling was also 
considered. After choosing wavelet function, next important step is 
selection of decomposition level. 

In theory decomposition process can continue infinitely, but really 
decomposition process cans perform to signal details involve one 
pixel only. In a signal decomposition using maximum decomposition is 
not correct because although it improves computations accuracy in 
network training have inverse result on simulated data, because over 
training of network pattern to training data. 

In this paper the simplest and first wavelet function was used, 
Haar. Also Daubechies function was used in two levels. 

At the end of this study, the wavelet results were compared with 
some traditional methods, such as AM and PD. 

 
4.1. Analysis and investigation of data 

 
In this part of study was investigated used data for different 

methods. In AM method 52 year data of Tollat station on Polroud  
 

River was used. In all of study period, the smallest data is 0.4 
m

3
/sec and the largest data is 537 m

3
/sec. The mean and standard 

deviation (Std) of AM data are 119.42 and 93.84 m
3
/sec, respectively. 

When normal distribution was used in AM and PD methods, data 
have to fitness to normal distribution, this subject was investigated 
drawing data on normal paper (Fig. 8). 

Fig. 8 clearly shows that Polroud data is not normal, so for using 
these data in normal distribution, must become normal. This can be 
done by different methods, that in this paper Box-Cox formula was 
used for normalization of data (Golizadeh et al. 2011). This 
normalization results are showed in Fig. 9. This picture clearly shows 
that data was normalized well. Used data in AM and PD methods was 
investigated for stationary, stability and homogeneity and station, 
stable and homogenous data was used finally. 

For many days in 52 years period has not recorded any discharge 
and this make an incomplete series, for solving this problem two ways: 
at first, reproduce artificial data for no discharge days that have a 
special problems and mistakes. And second, used a period of time 
that has complete discharge data. Second method was selected 
because an about 33 years period was distinguished in studying 
period, in other hand from many researchers point a minimum 30 
years period is enough (Grimaldi et al. 2006). 

In this study for FFA using wavelet transform 3 TS were used: first 
series is almost 33 years period that contain all the data, mean and 
standard deviation of data are 15.75 m

3
/sec and 17.85 m

3
/sec, 

respectively. This series called 100 % or full series in this paper. 
Second series is produced from omitting of all the data smaller than 
80 % of the least AM discharge, mean and standard deviation of this 
series are 40.17 m

3
/sec and 26.02 m

3
/sec, respectively. This series 

called 80 % series. And the last series produced like second series 
but in this case the criteria for omitting the data is the data smaller 
than 95 % of the least AM discharge or 25.8 m

3
/sec (called 95% 

series). Fig. 7 shows the full series (100 %). 

 

 

Fig. 7. Full time series for 32years period (100 % of data). 
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Fig. 8. Polroud discharges data on normal paper. 

 
 

  

 
 
 
5. Results and discussion 

 
In this section, we present flood frequency analyses for Polroud 

Basin, focusing on wavelet transform method. Fig. 10 shows the 
probability density distribution function related to TS that shows in Fig. 
7. Also Fig. 11 shows Daubechies10 in second level of 
decomposition. 

Table 3 shows the FFA results on full TS (100 % of data) using 
Haar1 and Daubechies10 with determined decomposition levels for 
different return periods. Table 4 and Table 5 show the results for TS 
80 % and TS 95 %, respectively.  

 

 
Table 3. Flood frequency analysis using haar and Duabechies10 with 

full series (100 % of data). 

Return period Probability Discharge (m
3
/s) 

Haar 
Discharge (m

3
/s) 

Dubechies10 

2 0.5 6.63 8.13 
10 0.1 32.49 31.85 
25 0.04 48.38 48.32 
50 0.02 61.58 60.93 

100 0.01 76.44 75.63 
1000 0.001 189.9 189.02 

 

Fig. 9. Polroud normalized data on normal paper. 
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FFA results on Polroud River presented using two wavelet 
functions, Haar and Daubechies10, with full and combined series. 
Now FFA results compute using Tollat station AM and PD data. 

For FFA using methods that data fitted to a special distribution, 
investigation of stationary, stability and homogeneity is necessary. All 
of these computations were performed on AM data and PD daily 
maximum discharge. Table 6 and Table 7 show these results, 
respectively. Investigation of these conditions was performed using 
Mann-Witeny and Wald-Wolfowitz, furthermore stationary was 
investigated in both cases. 

 
 

Table 4. Flood frequency analysis using haar and Duabechies10 with  
80 % time series. 

Return period Probability Discharge (m
3
/s) 

Haar 
Discharge (m

3
/s) 

Dubechies10 

2 0.5 31.3 31.6 
10 0.1 60.4 60.2 
25 0.04 81.8 81.4 
50 0.02 101.5 102.6 

100 0.01 138.4 138.6 
1000 0.001 293.7 293.7 

 

 

Table 5. Flood frequency analysis using haar and Duabechies10 with  
95 % time series. 

Return period 
(year) 

Probability Discharge 
(m

3
/s) 

Haar 

Discharge 
(m

3
/s) 

Dubechies10 

2 0.5 36.2 36.0 
10 0.1 65.5 65.3 
25 0.04 89.2 89.3 
50 0.02 111.2 111.5 
100 0.01 160.2 159.5 

1000 0.001 436.1 297.5 

   
 

 
Table 6. Flood frequency analysis using annual maximum data and fit 

to LP3 and exponential distribution. 
Return period 

(year) 
Probability of 
occurrence 

Discharge 
(m

3
/s) 

LP3 

Discharge 
(m

3
/s)  

Exponential 

2 0.5 92.3 90.6 
10 0.1 215.7 241.6 
25 0.04 311.6 327.6 
50 0.02 400.5 392.7 

100 0.01 508.5 457.7 

 
 
 
 
Table 7. Flood frequency analysis using partial series and fit to normal 

distribution. 

Return period (year) Probability of occurrence Discharge 
(m

3
/s) 

2 0.5 66.9 

10 0.1 136.5 

25 0.04 162.0 

50 0.02 178.5 

100 0.01 192.3 

1000 0.001 234.9 

 
5.1. Comparison of results 

 
At the end of this section, a general comparison between results 

of all methods was presented. Graphical results of all presented 
methods in this paper are showed in Fig. 12. In this figure, AM results 
was presented using Log-Pearson 3 (LP3) and wavelet results in two 
different type: full series and TS 5 % and also mean of 5 different 

wavelet functions (Haar, Daubechies3, Daubechies10, Symlet4 and 
Coiflet2). The time axis (horizontal axis) is logarithmic.  
An exact investigation of Fig. 12 shows that: 
a) AM result is the most overestimating method. This overestimation 
about Polroud data is clearer, because its distribution is exponential 
and in its AM data time series only 0.06 % of data is more than 200 
m

3
/sec and these numbers of data distributed in different years. 

b) In PD series, used data is about three times larger than AM series 
and almost all the added data is smaller than AM series data, so that 
results of this method is smaller than AM results as predicted. 
c) Above trend is continued in wavelet analysis, means with using a 
larger size of small data, results are becoming smaller and more 
accurate.  
d) When 5 % series is used estimations are much larger than full 
series is used. 
 

 
 

 
 

Fig.10. Probability distribution function of wavelet analysis time series 
(Haar1). 

 
 
 

 
 

Fig. 11. Probability distribution function of wavelet analysis time series 
(daubechies10). 
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Fig. 12. Graphical comparison for diffrent methods of flood frequency 

analysis on Polroud river. 

 
6. Conclusion 

 
Presentation of variety of methods of FFA in more than last half 

century can't cause less consideration by researchers to this branch of 
hydrology, which shows the importance of FFA. Results collection of 
this paper shows that when numerous of small data are so going up, 
the model is prepared smaller analysis results. Briefly, when 
frequently of small data is too much and large data is occurred rarely, 
dependence of study aim different method can use. But when data 
distribution almost is uniform or has a collection of too small data only, 
wavelet can present the very exact results. According to last studies, 
statistical methods are contained too mistake hypothesis and although 
their large results, those ones are not closed to accurate results. In 
general, for every project, researcher must select the best method 
based on the hydrological studying of watershed and available data. 
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