تعداد نشریات | 23 |
تعداد شمارهها | 368 |
تعداد مقالات | 2,890 |
تعداد مشاهده مقاله | 2,566,186 |
تعداد دریافت فایل اصل مقاله | 1,821,850 |
بررسی تغییرات در بیان ژن P5CS، و برخی صفات فیزیولوژیک و بیوشیمایی گندم در پاسخ به باکتری آزوسپیریلوم و قارچ پیریفورمواسپورا ایندیکا تحت تنش شوری | ||
بیوتکنولوژی و بیوشیمی غلات | ||
مقاله 1، دوره 2، شماره 4، دی 1402، صفحه 391-417 اصل مقاله (841.98 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22126/cbb.2024.10502.1070 | ||
نویسندگان | ||
محمدجواد زارع* 1؛ زهره کریمی2 | ||
1دانشیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران. | ||
2دانش آموخته دکتری آگروتکنولوژی، گروه زراعت و اصلاح نباتات، دانکشده کشاورزی، دانشگاه ایلام، ایلام، ایران. | ||
چکیده | ||
مقدمه: تنشهای محیطی از بزرگترین تهدیدها برای ثبات در تولید محصولات کشاورزی محسوب میگردند. تغییرات آب و هوایی شدت تنشهای محیطی را در مناطق مختلف جهان افزایش داده است. خشکی و شوری مهمترین تنشهای محیطی مناطق خشک و نیمه خشک جهان هستند. در دهههای اخیر راهکارهای مختلفی جهت کاهش اثرات تنش شوری بر گیاهان زراعی معرفی شده است. استفاده از میکروارگانیسمهای مفید خاک از جمله روشهای توصیه شده میباشد. مواد و روشها: در مطالعه حاضر اثر باکتری آزوسپیریلوم و قارچ پیریفورمواسپورا ایندیکا در تلقیح جداگانه و توامان آنها بهمنظور بررسی تغییرات مولکولی، بیوشیمایی و فیزیولوژی گندم تحت اعمال و عدم اعمال تنش شوری بررسی گردید. آزمایش بهصورت فاکتوریل سه عاملی هر کدام با دو سطح بر پایه طرح کاملاٌ تصادفی و در سه تکرار در گلخانه دانشکده کشاورزی دانشگاه ایلام انجام گرفت. سه تیمار آزمایش شامل تنش شوری (0 و 12 دسی زیمنس بر متر)، تلقیح با باکتری آزوسپیریلوم (108 × 1.8 سلول زنده در هر میلیلیتر محیط کشت)، و کاربرد قارچ پیریفورمواسپورا ایندیکا (10 گرم حاوی کلامیدوسپور در یک کیلوگرم خاک) بود. جهت اعمال تنش شوری 12 دسی زیمنس بر متر از مخلوط دو نمک کلرید کلسیم (65 میلی گرم) و کلرید سدیم (375/0 گرم) استفاده گردید. 21 و 28 روز پس از سبز شدن گندم شوری اعمال گردید. از گندم رقم پیشگام جهت این آزمایش استفاده گردید. 24 ساعت پس از اعمال دومین آبیاری با آب شور نمونهگیری برگ به جهت استخراج RNA کل و مطالعات مرتبط با بیان ژن دلتا-پیرولین-5 کربوکسیلات سینتاز که آنزیم کلیدی در مسیر سنتز پرولین است انجام گرفت. میزان تغییرات پرولین برگ، میزان تولید مالون دی آلدهید، نشت یونی، محتوای آب نسبی برگ، محتوای نیتروژن، میزان رنگیزههای کلروفیلی در پاسخ به میکروارگانیسمهای مذکور مورد بررسی قرار گرفت. همچنین میزان کلونیزاسیون قارچ و سوکسینات دهیدروژناز که معیاری از میزان فعالیت زیستی قارچ در ریشه گیاه است نیز مورد سنجش قرار گرفت. یافتهها: درصد کلونیزاسیون قارچ با ریشه گندم رقم پیشگام 9/24 درصد بود. تلقیح با آزوسپیریلوم میزان کلونیزاسیون ریشه با قارچ را 17/3 درصد افزایش داد و به مقدار 29 درصد رساند. شوری تاثیر معنیداری بر سوکسینات دهیدروژناز نداشت اما تلقیح با باکتری میزان آن را به صورت معنیداری افزایش داد. گیاهان تلقیح شده با قارچ و باکتری از محتوای آب نسبی بیشتر اما نشت یونی و مالون دی آلدهید کمتری تحت شوری برخوردار بودند. شوری موجب تغییر معنیدار در میزان رنگیزههای کلروفیلی نگردید؛ هر چند تلقیح با قارچ و باکتری میزان کلروفیل a را افزایش داد. تاثیر شوری، قارچ و باکتری و اثر متقابل آنها بر میزان بیان ژن دلتا-پیرولین-5 کربوکسیلات سینتاز معنیدار بود. گیاهان شاهد سطوح بیشتری از بیان ژن را نشان دادند. در حالیکه گیاهان تلقیح شده با قارچ و باکتری از میزان بیان ژن کمتری برخوردار بودند. همچنین کاربرد همزمان باکتری و قارچ بر میزان بیان ژن دلتا-پیرولین-5 کربوکسیلات سینتاز معنیدار بود و موجب کاهش بیشتر آن در مقایسه با گیاهانی که فقط با قارچ تلقیح شده بودند گردید. اثر شوری، قارچ و باکتری و نیز اثرات متقابل آنها بر میزان غلظت پرولین برگ معنیدار بود. تحت تنش شوری میزان پرولین در گیاهان تلقیح شده با قارچ کمتر از گیاهان شاهد بود. چنین روندی نیز در گیاهان تلقیح شده با باکتری مشاهده گردید بهطوری که گیاهان تلقیح شده سطوح کمتری از پرولین را تحت تنش شوری نشان دادند. نتیجهگیری: گیاهان تلقیح شده با قارچ و باکتری نسبت به گیاهان شاهد کمتر تحت تاثیر تنش شوری قرار گرفتند که میزان تولید کمتر مالون دی آلدهید و نشت الکترولیت و بالاتر بودن میزان رنگریزه کلروفیلی و محتوای آب نسبی برگ تایید کننده این نتایج بود. همچنین میزان بیان ژن دلتا-پیرولین-5 کربوکسیلات سینتاز و تجمع پرولین در گیاهان تحت تنش شوری در مقایسه با گیاهان کنترل نشان داد که میکروارگانیسمهای استفاده شده از طریق دیگری شدت تنش را بر گیاه میزبان کاهش دادهاند. | ||
کلیدواژهها | ||
پرولین؛ روابط گیاه -میگروارگانیسم؛ سوکسینات دهیدروژناز؛ مالون دی آلدهید؛ نشت یونی | ||
مراجع | ||
Abdel-Fattah, G. M. 2001. Measurement of the viability of arbuscular-mycorrhizal fungi using three different stains; relation to growth and metabolic activities of soybean plants. Microbiological research, 156: 359-67. 10.1078/0944-5013-00121. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology, 24: 1-5. 10.1104/pp.24.1.1. Ashraf, M., Hasnain, S., Berge, O., & Mahmood T. 2004. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils, 40: 157-162. 10.1007/s00374-004-0766-y. Asrar, A. A., Abdel-Fattah, G. M., & Elhindi K. M. 2012. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica, 50, 305-316. 10.1007/s11099-012-0024-8. Atouei M. T., Pourbabaee, A. A., & Shorafa, M. .2019. Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria. Iranian Journal of Science and Tech nology, 43, 2725-2733. 10.1007/s40995-019-00753-x. Bajji, M., Kinet, J. M., & Lutts, S. 2002. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36, 61-70. 10.1023/A:1014732714549. Bates, L. S., Waldren, R. P., & Teare, I. D. 1973. Rapid Determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060. Boorboori, M. R., Zhang, H. Y. 2022.The Role of Serendipita indica (Piriformospora indica) in improving plant resistance to drought and salinity stresses. Biology (Basel),11, 952. https://doi.org/10.3390/biology11070952. Cheng, Z., Woody, O. Z., Mcconkey, B. J., & Glick, B. R. 2012. Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Applied Soil Ecology, 61: 255-263. 0.1016/j.apsoil.2011.10.006. Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A., & Yurin V. 2014. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65: 1259-70. 10.1093/jxb/eru004. Epub 2014 Feb 11. Djighaly, P.I., Diagne, N., Ngom, M., Hocher, D., Fall, V., Diouf, D., Laplaze, L., Svistoonoff, S., & Champion, A. 2018. Selection of arbuscular mycorrhizal fungal strains to improve Casuarina equisetifolia L. and Casuarina glauca Sieb. Tolerance to salinity. Annals of Forest Science, 75, 72. 10.1007/s13595-018-0747-1. Domínguez-Núñez, J. A., Berrocal-Lobo, M., & Albanesi, A. S. 2015. Interaction of Azospirillum and Mycorrhiza. In: Cassán, F., Y. Okon and C. Creus. (eds) Handbook for Azospirillum. Springer, Cham. El Moukhtari, A., Cabassa-Hourton, C., Farissi, M., & Savouré, A. 2020. How does proline treatment promote salt stress tolerance during crop plant development? Frontire in Plant Science, 11, 1127. doi: 10.3389/fpls.2020.01127. Fukami, J., Cerezini, P., & Hungria, M. 2018. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, 8, 73. 10.1186/s13568-018-0608-1. Ghorbani, A., Omran, V. O. G., Razavi, S. M., Pirdashti, H. & Ranjbar, M. 2019. Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K+/Na+ homeostasis and water status. Plant Cell Reports, 38, 1151-1163. 10.1007/s00299-019-02434-w. Gill, S. S., Gill, R., Trivedi, D. K., Anjum, N. A., Sharma, K. K., Ansari, M. W., Ansari, A. A., Johri, A. K., Prasad, R., Pereira, E., Varma, A., & Tuteja, N. 2016. Piriformospora indica: potential and significance in plant stress tolerance. Frontiers in Microbiology, 7, 332. 10.3389/fmicb.2016.00332 Haji nia, S., Zarea, M. J., Rejali, F., & Varma, A. 2012. Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil. Journal of the Saudi Society of Agricultural Scienc, 11: 113-121. 10.1016/j.jssas.2012.02.001 Hartmann A., Fischer, D., Kinzel, L., Chowdhury, S. P., Hofmann, A., Baldani, J. I., & Rothballer, M. 2019. Assessment of the structural and functional diversities of plant microbiota: Achievements and challenges - A review. Journal of Advanced Research, 19, 3-13. 10.1016/j.jare.2019.04.007. Hasanuzzaman, M., & Fujita, M. 2022. Plant responses and tolerance to salt stress: Physiological and molecular interventions. International Journal of Molecular Sciences, 23, 4810. 10.3390/ijms242115740. Hill, T., & Kaefer, E. 2001. Improved protocols for Aspergillus minimal medium: trace element and minimal medium salt stock solution. Fungal Genetics Reports, 48, 20-21. 10.4148/1941-4765.1173. Hnilickova, H., Kraus, K., Vachova, P., & Hnilicka, F. 2021. Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants (Basel), 10, 845. 10.3390/plants10050845. Hosseini, F., Mosaddeghi, M. R., & Dexter, A. R. 2017. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses. Plant Physiology and Biochemistry, 118, 107-120. 10.1016/j.plaphy.2017.06.005 Huang, S., Gill, S., Ramzan, M., Ahmad, M. Z., Danish, S., Huang, P., Al Obaid, S., and Alharbi, S. A. 2023. Uncovering the impact of AM fungi on wheat nutrient uptake, ion homeostasis, oxidative stress, and antioxidant defense under salinity stress. Scientific Reports, 13, 8249. 10.1038/s41598-023-35148-x. Jakhar, S., & Mukherjee, D. 2014. Chloroplast pigments, proteins, lipid peroxidation and activities of antioxidative enzymes during maturation and senescence of leaves and reproductive organs of Cajanus cajan L. Physiology and Molecular Biology of Plants, 20, 171-180. 10.1007/s12298-013-0219-x. Karimi, N., Zarea, M. J., and Mehnaz, S. 2018. Endophytic Azospirillum for enhancement of growth and yield of wheat. Environmental Sustainability, 1: 149-158. 10.1007/s42398-018-0014-2. Karimi, Z., Zarea, M. J., Fazeli, A., and Zarei, B. 2024. Role of sulfur in pyrroline-5-carboxylate synthase (P5CS) gene expression, proline accumulation, and antioxidant enzyme activity of wheat under water deficit conditions. Iran Agricultural Research, 42: 83-98. 10.22099/iar.2023.48068.1552 Kasim, W. A., Osman, M. E. H., Omar , M. N., & Salama, S. E. 2021. Enhancement of drought tolerance in Triticum aestivum L. seedlings using Azospirillum brasilense NO40 and Stenotrophomonas maltophilia B11. Bulletin of the National Research Centre, 45, 95. 10.1186/s42269-021-00546-6. Khalvandi, M., Amerian, M., Pirdashti, H., & Keramati, S. 2021. Does co-inoculation of mycorrhiza and Piriformospora indica fungi enhance the efficiency of chlorophyll fluorescence and essential oil composition in peppermint under irrigation with saline water from the Caspian Sea? PLoSOne, 16: e0254076. 10.1371/journal.pone.0254076. Kononenko, N., Baranova, E., Dilovarova, T., Akanov, E., & Fedoreyeva, L. 2020. Oxidative damage to various root and shoot tissues of durum and soft wheat seedlings during Salinity. Agriculture, 10, 55. 10.3390/agriculture10030055. Kough, J. L., Gianinazzi-Pearson, V., & Gianinazzi, S. 1987. Depressed metabolic activity of vesicular-arbuscular mycorrhizal fungi after fungicide application. New Phytologist, 106: 707-715. 10.1111/j.1469-8137.1987.tb00171.x. Kundu, A., & Vadassery, J. 2022. Molecular mechanisms of Piriformospora indica mediated growth promotion in plants. Plant Signaling and Behavior, 17, 2096785. 10.1080/15592324.2022.2096785. Lichtenthaler, H. K., and Wellburn, A. R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591-592. https://doi.org/10.1042/bst0110591. Livak, K. J., & Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods, 25, 402-8. 10.1006/meth.2001.1262. Lutts, S., Kint, J. M., & Bouharmont, J.1996. NaCl-induced senescence in leaves of rice (Oriza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78, 389-398. 10.1006/anbo.1996.0134. Jafarian, T., Zarea M. J., & Siosemardeh, A. 2017. Histological responses of two wheat species to azospirillum inoculation under dryland farming. Journal of Plant Physiology and Breeding, 7, 67-79. Ma, J., Du, G., Li, X., Zhang, C., & Guo, J. A. 2015. Major locus controlling malondialdehyde content under water stress is associated with fusarium crown rot resistance in Wheat. Molecular Genetics and Genomics, 290, 1955-1962. 10.1007/s00438-015-1053-3. Ma, Y., Dias, M. C., & Freitas, H. 2020. Drought and salinity tress responses and microbe-induced tolerance in plants. Frontiers in Plant Science, 11, 591911. 10.3389/fpls.2020.591911. Maghsoudi, K., Emam, Y., Niazi, A., Pessarakli, M., & Arvin, M. J. 2018. P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid.Journal of Plant Interactions, 13, 461-471. 10.1080/17429145.2018.1506516 Masarmi, A. G., Solouki, M., Fakheri, B., Kalaji, H. M., Mahgdingad, N., Golkari, S., Telesiński, A., Lamlom, S. F., Kociel, H., & Yousef, A. F. 2023. Comparing the salinity tolerance of twenty different wheat genotypes on the basis of their physiological and biochemical parameters under NaCl stress. PLoS One, 18, e0282606. 10.1371/journal.pone.0282606. Mazhar, R., Ilyas, N., Saeed, M. R., Bibi, F., & Batool, N. 2016. Biocontrol and salinity tolerance potential of Azospirillum lipoferum and its inoculation effect in wheat crop. International Journal of Agriculture and Biology, 18, 494-500. 10.17957/IJAB/15.0115. McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., & Swan, J. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 115, 495-501. 10.1111/j.1469-8137.1990.tb00476.x. Molina, R. M., Rivera, D., Mora, V., López, G., Rosas, S. B., Spaepen, S., Vanderleyden, J., & Cassan, F. D. 2018. Regulation of IAA biosynthesis in Azospirillum brasilense under environmental stress conditions. Current Microbiology, 75, 1408-1418. 10.1007/s00284-018-1537-6. Munns, R., & Gilliham, M. 2015. Salinity tolerance of crops – what is the cost? New Phytologist, 208, 668-673. 10.1111/nph.13519. Epub 2015 Jun 24. Pastuszak, J., Dziurka, M., Hornyák, M., Szczerba, A., Kopeć, P., & Płażek, A. 2022. Physiological and biochemical parameters of salinity resistance of three durum wheat genotypes. International Journal of Molecular Sciences, 23, 8397. 10.3390/ijms23158397. Raffi, M. M., & Charyulu, P. B. 2021. Azospirillum-biofertilizer for sustainable cereal crop production: Current status. In: Viswanath B.(ed) Recent developments in applied microbiology and biochemistry. pp. 193-209. Rashid, U., Yasmin, H., Hassan, M. H., Naz, R., Nosheen, A., Sajjad, M., Ilyas, N., Keyani, R., Jabeen, Z., Mumtaz, S., Alyemeni, M. N., & Ahmad, P. 2021. Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions. Plant Cell Reports, 41, 549-569. 10.1007/s00299-020-02640-x. Ribeiro, V. P., Gomes, E. A., de Sousa, S. M., de Paula Lana, U. J., Coelho, A. M., Marriel, I. E., & de Oliveira-Paiva, C. A. 2022. Co-inoculation with tropical strains of Azospirillum and Bacillus is more efficient than single inoculation for improving plant growth and nutrient uptake in maize. Archives of Microbiology, 204, 143. 10.1007/s00203-022-02759-3 Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. 1990. Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30, 105-111. 10.2135/cropsci1990.0011183X003000010025x. Roy, S. J., Nagrao, S., & Tester, M. 2014. Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115-124. doi: 10.1016/j.copbio.2013.12.004. Ruíz-Sánchez, M., Armada, E., Muñoz, Y., García de Salamone, I. E., Aroca, R., Ruíz-Lozano, J. M., Azcón, R. 2011. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. Journal of Plant Physiology, 168, 1031-7. 168:1031-7. 10.1016/j.jplph.2010.12.019. Scharnagl, K., Sanchez, V., & von Wettberg, E. 2018. The impact of salinity on mycorrhizal colonization of a rare legume, Galactiasmallii, in south Florida pine rocklands. BMC Research Notes, 11, 2. 10.1186/s13104-017-3105-8 Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1-26.. 10.1155/2012/217037. Stewart, R. R. C., & Bewley, J. D. 1980. Lipid peroxidation associated aging of soybean axes. Plant Physiology, 65, 245-248. 10.1104/pp.65.2.245. Tavakoli, M., Poustini, K., & Alizadeh, H. 2016. Proline accumulation and related genes in wheat leaves. Under salinity stress. Journal of Agricultural Science and Technology, 18, 707-716. 20.1001.1.16807073.2016.18.3.12.4. Tsai, H. J., Shao, K. H., Chan, M. T., Cheng, C. P., Yeh, K. W., Oelmüller, R., & Wang, S. J. 2020. Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems. Plant Signaling and Behavior, 15, 1722447. 10.1080/15592324.2020.1722447. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fisher, M., Heier, T., Hückelhoven, R., Neumann, C., von Wettstein, D., Franken, P., & Kogel, K. H. 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences, 102, 13386-13391. 10.1073/pnas.0504423102 Yousefi, S., Kartoolinejad, D., Bahmani, M., & Naghdi, R. 2017. Effect of Azospirillum lipoferum and Azotobacter chroococcum on germination and early growth of hopbush shrub (Dodonaea viscosa L.) under salinity stress. Journal of Sustainable Forestry, 36, 107-120. 10.1080/10549811.2016.1256220. Yu, Z., Zhang, Q. Yang, H., Tang, J. J., Weiner, J., & Chen, X. 2012. The effects of salt stress and arbuscular mycorrhiza on plant neighbour effects and self-thinning. Basic and Applied Ecology, 13, 673-680. 10.1016/j.baae.2012.09.009. Zarea M. J. 2017. Azospirillum and wheat production. Springer, Singapore. Zarea, M. J. 2023a. Effect of foliar application of Zinc and exogenous application of proline on yield and grain Zn and P content in a wheat durum cultivar Saji under drought stress condition. Cereal Biotechnology and Biochemistry, 2, 269-287. DOI: 10.22126/cbb.2024.9987.106. Zarea, M. J., & Karimi, N. 2023b. Zinc-Regulated P5CS and sucrose transporters SUT1B expression to enhance drought stress tolerance in wheat. Journal of Plant Growth Regulation, 42, 5831-5841. 10.1007/s00344-023-10968-3. Zarea, M. J., & Karimi, N. 2023c. Grain yield and quality of wheat are improved through post-flowering foliar application of zinc and 6- benzylaminopurine under water deficit condition. Frontire in Plant Science, 13, 1068649. 10.3389/fpls.2022.1068649. Zarea, M. J., Hajinia, S., Karimi, N., Mohammadi Goltapeh, E., Rejali, F., &. Varma, A. 2012. Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry, 45, 139-146. 10.1016/j.soilbio.2011.11.006. Zeeshan, M., Lu, M., Sehar, S., Holford, P., & Wu, F. 2020. Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in Wheat and Barley genotypes deferring in salinity tolerance. Agronomy, 10, 127. 10.3390/agronomy10010127 Zúñiga A, Poupin, M. J., & Donoso, R. 2013. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of arabidopsis thaliana by Burkholderia phytofirmans PsJN. Molecular Plant-Microbe Interactions, 26, 546-553. 10.1094/MPMI-10-12-0241-R | ||
آمار تعداد مشاهده مقاله: 175 تعداد دریافت فایل اصل مقاله: 189 |