تعداد نشریات | 23 |
تعداد شمارهها | 368 |
تعداد مقالات | 2,890 |
تعداد مشاهده مقاله | 2,566,179 |
تعداد دریافت فایل اصل مقاله | 1,821,838 |
Exploring the Physiology and Genetic Stability of Rapeseed Plants for Assessing Oil Content in Western Iran | ||
Agrotechniques in Industrial Crops | ||
دوره 5، شماره 1، خرداد 2025، صفحه 34-45 اصل مقاله (858.08 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22126/atic.2024.9865.1122 | ||
نویسندگان | ||
Mehdi Kakaei* 1؛ Zeinab Chaghakaboodi2؛ Alireza Zebarjadi2؛ Danial Kahrizi3 | ||
1Department of Production Engineering and Plant Genetics, Payame Noor University, Tehran, Iran | ||
2Department of Plant Genetics and Production, Faculty of Agricultural Sciences and Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran | ||
3Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran | ||
چکیده | ||
Identifying canola genotypes with high oil percentages and stability across diverse environmental conditions is crucial for breeding programs aiming to enhance crop productivity. Drought stress poses a significant challenge to canola yield, making the selection of adaptable genotypes imperative. This study investigates genotype-environment interaction (GEI) to identify stable canola genotypes with consistent oil percentages under varying conditions. Field experiments over two years in irrigated and rainfed environments evaluated fourteen genotypes using a randomized complete block design. Analysis of variance (ANOVA) revealed significant GEI effects, prompting a search for stable genotypes using stability analysis methods such as AMMI (Additive Main Effects and Multiplicative Interaction) and GGE (Genotype and Genotype by Environment Interaction) biplots. Results highlight Licord as the most stable genotype, maintaining consistent oil percentage across environments. Genotypes 12, 14, and 5 exhibit minimal interaction, indicating stability, while genotypes 5, 7, 8, and 9 are more influenced by environmental factors, emphasizing the need for targeted breeding strategies. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
AMMI؛ Brassica napus؛ GGE bi-plot؛ Oil percentage | ||
مراجع | ||
Afzal O., Hassan F.U., Ahmed M., Shabbir G., Ahmed S. 2021. Determination of stable safflower genotypes in variable environments by parametric and non-parametric methods. Journal of Agriculture and Food Research 6: 100233. https://doi.org/10.1016/j.jafr.2021.100233
Alizadeh B., Rezaizad A., Yazdandoost Hamedani M., Shiresmaeili G., Nasserghadimi F., Khademhamzeh H.R., Gholizadeh A. 2022. Genotype × environment interactions and simultaneous selection for high seed yield and stability in winter rapeseed (Brassica napus) multi-environment trials. Agricultural Research 11(2): 185-196. https://doi.org/10.1007/s40003-021-00565-9
Anuradha N., Patro T.S.S.K., Singamsetti A., Sandhya Rani Y., Triveni U., Nirmala Kumari A., Govanakoppa N., Lakshmi Pathy T., Tonapi V.A. 2022. Comparative study of AMMI-and BLUP-based simultaneous selection for grain yield and stability of finger millet [Eleusine coracana (L.) Gaertn.] genotypes. Frontiers in Plant Science 12: 786839. https://doi.org/10.3389/fpls.2021.786839
Bouabdelli S., Zeroual A., Meddi M., Assani A. 2022. Impact of temperature on agricultural drought occurrence under the effects of climate change. Theoretical and Applied Climatology 148(1): 191-209. https://doi.org/10.1007/s00704-022-03935-7
Brar K.S., Singh P., Mittal V.P., Singh P., Jakhar M.L., Yadav Y., Sharma M.M., Shekhawat U.S., Kumar C. 2010. GGE biplot analysis for visualization of mean performance and stability for seed yield in taramira at diverse locations in India. Journal of Oilseed Brassica 1(2): 66-74. http://srmr.org.in/ojs/index.php/job/article/view/112/108
Chaghakaboodi Z., Kakaei M., Zebarjadi A.R., Kahrizi D., Karatas A. 2021. Biplot analysis of genotype-environment interaction in rapeseed (Brassica napus L.) in two normal and stress condition using the AMMI model. Journal of DESERT 26(2): 279-285. https://doi.org/10.22059/jdesert.2021.321211.1006811
Crossa J. 1990. Statistical analyses of multilocation trials. Advances in Agronomy 44: 55-85. https://doi.org/10.1016/S0065-2113(08)60818-4
Eberhart S.T., Russell W. 1966. Stability parameters for comparing varieties 1. Crop Science 6(1): 36-40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x
FAOSTAT. 2022. Food and Agriculture Organization of the United Nations, Food and Agricultural Commodities Production. https://www.fao.org/statistics/en
Farshadfar E., Koszegi B., Tischner T., Sutka J. 1995. Substitution analysis of drought tolerance in wheat. Plant Breeding 114(6): 542-544. https://doi.org/10.1111/j.1439-0523.1995.tb00853.x
Gauch H.G., Zobel R.W. 1990. Imputing missing yield trial data. Theoretical and Applied Genetics 79: 753-761. https://doi.org/10.1007/BF00224240
Gołębiewska K., Fraś A., Gołębiewski D. 2022. Rapeseed meal as a feed component in monogastric animal nutrition–a review. Annals of Animal Science 22(4): 1163-1183. https://doi.org/10.2478/aoas-2022-0020
Jamshid Moghaddam M., Eskandari Torbaghan M., Mirzaee A. 2014. Analysis of genotype × environment interaction for seed yield in spineless safflower (Carthamus tinctorius L.) genotypes. Crop Breeding Journal 4(1): 47-56. https://doi.org/10.22092/cbj.2014.109672
Kakaei M., Mazaheri Laqab H. 2023. Genetic analysis of path coefficients of some traits in relation with tolerance to alfalfa leaf weevil (Hypera postica Gell.). Journal of Genetic Resources 9(1): 83-91. https://doi.org/10.22080/jgr.2023.24987.1343
Khan M.M., Rafii M.Y., Ramlee S.I., Jusoh M., Al Mamun M. 2021. AMMI and GGE biplot analysis for yield performance and stability assessment of selected Bambara groundnut (Vigna subterranea L. Verdc.) genotypes under the multi-environmental trials (METs). Scientific Reports 11(1): 22791. https://doi.org/10.1038/s41598-021-01411-2
Miyan M.A. 2015. Droughts in Asian least developed countries: vulnerability and sustainability. Weather and Climate Extremes 7: 8-23. https://doi.org/10.1016/j.wace.2014.06.003
Motahhari A., Hervan E.M., Alizadeh B., Khosroshali M. 2020. The analysis of genotype × environmental interaction using rapeseed (Brassica napus L.) by GGE biplot method. Iraqi Journal of Agricultural Sciences 51(5): 1337-1349. https://doi.org/10.36103/ijas.v51i5.1143
Purchase J.L., Hatting H., Van Deventer C.S. 2000. Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil 17(3): 101-107. https://doi.org/10.1080/02571862.2000.10634878
Raiger H.L, Prabhakaran V.T. 2001. A study on the yield of a few non-parametric stability measures using pearl-millet data. Indian Journal of Genetics and Plant Breeding 61(1): 7-11. https://www.isgpb.org/journal/index.php/IJGPB/article/view/1936
Schneider K.A., Rosales‐Serna R., Ibarra‐Perez F., Cazares‐Enriquez B., Acosta‐Gallegos J.A., Ramirez‐Vallejo P., Wassimi N., Kelly J.D. 1997. Improving common bean performance under drought stress. Crop Science 37(1): 43-50. https://doi.org/10.2135/cropsci1997.0011183X003700010007x
Shojaei S.H., Mostafavi K., Khodarahmi M., Zabet M. 2011. Response study of canola (Brassica napus L.) cultivars to multi-environments using genotype plus genotype environment interaction (GGE) biplot method in Iran. African Journal of Biotechnology 10(53): 10877-10881. https://doi.org/10.5897/AJB11.1913
Sincik M., Goksoy A.T., Senyigit E., Ulusoy Y., Acar M., Gizlenci S., Suzer S. 2021. Response and yield stability of canola (Brassica napus L.) genotypes to multi-environments using GGE biplot analysis. Bioagro 33(2): 105-114. https://doi.org/10.51372/bioagro332.4
Sneller C.H., Kilgore‐Norquest L., Dombek D. 1997. Repeatability of yield stability in soybean. Crop Science 37(2): 383‐390. https://doi.org/10.2135/cropsci1997.0011183X003700020013x
Stevanato P., De Biaggi M., Broccanello C., Biancardi E., Saccomani M. 2015. Molecular genotyping of ‘‘Rizor’’ and ‘‘Holly’’ rhizomania resistances in sugar beet. Euphytica 206: 427-431. https://doi.org/10.1007/s10681-015-1503-3
Yan W., Kang M.S., Ma B., Woods S., Cornelius P.L. 2007. GGE biplot vs AMMI analysis of genotypes-by-environment data. Crop Science 47(2): 643-655. https://doi.org/10.2135/cropsci2006.06.0374
Yang R.C., Crossa J., Cornelius P.L., Burgueño J. 2009. Biplot analysis of genotype × environment interaction: Proceed with caution. Crop Science 49(5): 1564-1576. https://doi.org/10.2135/cropsci2008.11.0665
Zhang H., Feng Z., Wang J., Yun X., Qu F., Sun C., Wang Q. 2023. Genotype by environment interaction for grain yield in foxtail millet (Setaria italica) using AMMI model and GGE Biplot. Plant Growth Regulation 99(1): 101-112. https://doi.org/10.1007/s10725-022-00885-y
Zhang Z., Lu C., Xiang Z.H. 1998. Stability analysis for varieties by AMMI model. Acta Agronomica Sinica 24(3): 304‐309.
Zobel R.W., Wright M.J., Gauch H.G. 1988. Statistical analysis of a yield trial. Agronomy Journal 80(3): 388-393. https://doi.org/10.2134/agronj1988.00021962008000030002x | ||
آمار تعداد مشاهده مقاله: 85 تعداد دریافت فایل اصل مقاله: 157 |