تعداد نشریات | 23 |
تعداد شمارهها | 368 |
تعداد مقالات | 2,890 |
تعداد مشاهده مقاله | 2,566,202 |
تعداد دریافت فایل اصل مقاله | 1,821,857 |
Glycosylation Analysis of the Avr9 Effector of Cladosporium fulvum, the Fungal Pathogen of Solanum lycopersicum | ||
Agrotechniques in Industrial Crops | ||
دوره 4، شماره 4، اسفند 2024، صفحه 180-188 اصل مقاله (803.42 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22126/atic.2024.10751.1150 | ||
نویسنده | ||
Mansoor Karimi-Jashni* 1، 2 | ||
1Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands | ||
2Department of Plant Pathology, Agriculture College, Tarbiat Modares University, Tehran, Iran | ||
چکیده | ||
Tomato (Solanum lycopersicum) is one of the most important industrial crops, and is threated with various fungal pathogens like Cladosporium fulvum. This fungus secretes Avr9 effector into the apolast of tomato plants and is recognized by the tomato receptor-like protein Cf-9. Avr9-enoding gene is highly expressed during colonization of tomato apoplast. Avr9 shares significant structural similarity with carboxypeptidase inhibitors, expecting to target host apoplastic proteases. So far, despite using sophisticated methodologies, no definitive Avr9-interacting proteins have been successfully identified. One hypothesis is that glycosylation of Avr9 might be crucial for interaction with host target(s). In this study, native proteins secreted by C. fulvum expressing Avr9 were isolated. Mass spectrometry analysis revealed that Avr9 is N-glycosylated when secreted by C. fulvum, containing at least two N-acetylglucosamine (GlcNAc) and six mannose residues. The necrosis-inducing activity of glycosylated and non-glycosylated Avr9 was determined and it was found that both caused a comparable Cf-9-mediated hypersensitive response. This research represents a crucial advancement in the comprehension of the molecular interactions pertaining to the Avr9 effector. Nevertheless, more thorough examinations are requisite to completely elucidate its functionality and the implications of glycosylation. Refining the experimental parameters and investigating additional potential interactors would presumably augment the reliability of the results. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Glycosylation؛ Hypersensitive reaction؛ Plant-Microbe interaction؛ Secreted effector؛ Tomato pathogen | ||
مراجع | ||
Aducci P., Ward J.M., Schroeder J.I. 1997. Roles of ion channels in initiation of signal transduction in higher plants. In Signal Transduction in Plants (pp. 1-22). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9183-7_1
Anyaogu D.C., Hansen A.H., Hoof J.B., Majewska N.I., Contesini F.J., Paul J.T., Nielsen K.F., Hobley T.J., Yang S., Zhang H., Betenbaugh M. 2021. Glycoengineering of Aspergillus nidulans to produce precursors for humanized N-glycan structures. Metabolic Engineering 67: 153-163. https://doi.org/10.1016/j.ymben.2021.06.001
Arnold J.N., Wormald M.R., Sim R.B., Rudd P.M., Dwek R.A. 2007. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annual Review of Immunology 25(1): 21-50. https://doi.org/doi:10.1146/annurev.immunol.25.022106.141702
Bosch D., Castilho A., Loos A., Schots A., Steinkellner H. 2013. N-glycosylation of plant-produced recombinant proteins. Current Pharmaceutical Design 19(31): 5503-5512. https://doi.org/10.2174/1381612811319310006
Chen X.L., Shi T., Yang J., Shi W., Gao X., Chen D., Xu X., Xu J.R., Talbot N.J., Peng Y.L. 2014. N-Glycosylation of effector proteins by an α-1,3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. The Plant Cell 26(3): 1360-1376. https://doi.org/10.1105/tpc.114.123588
Cummings R.D. 2019. Stuck on sugars–how carbohydrates regulate cell adhesion, recognition, and signaling. Glycoconjugate Journal 36: 241-257. https://doi.org/10.1007/s10719-019-09876-0
de Wit P.J., Spikman G. 1982. Evidence for the occurrence of race and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions of Cladosporium fulvum and tomato. Physiological Plant Pathology 21(1): 1-11. https://doi.org/10.1016/0048-4059(82)90002-9
de Wit P.J., Van Der Burgt A., Ökmen B., Stergiopoulos I., Abd-Elsalam K.A., Aerts A.L., Bahkali A.H., Beenen H.G., Chettri P., Cox M.P., Datema E., de Vries R.P., Dhillon B., Ganley A.R., et al. 2012. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genetics 8(11): e1003088. https://doi.org/10.1371/journal.pgen.1003088
Deshpande N., Wilkins M.R., Packer N., Nevalainen H. 2008. Protein glycosylation pathways in filamentous fungi. Glycobiology 18(8): 626-637. https://doi.org/10.1093/glycob/cwn044
Food and Agricutlure Organization of United Nations (FAO). 2022. www.fao.org
Fraser C.M., Rider L.W., Chapple C. 2005. An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase-like gene family. Plant Physiology 138(2): 1136-1148. https://doi.org/10.1104/pp.104.057950
Herscovics A. 1999. Processing glycosidases of Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - General Subjects 1426(2): 275-285. https://doi.org/10.1016/S0304-4165(98)00129-9
Karimi-Jashni M. 2015. Identification and functional characterization of proteases and protease inhibitors involved in virulence of fungal tomato pathogens. Doctoral dissertation, Wageningen University and Research. https://edepot.wur.nl/352648
Karimi-Jashni M., Mehrabi R., Collemare J., Mesarich C.H., de Wit P.J. 2015. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant–pathogen interactions. Frontiers in Plant Science 6: 584. https://doi.org/10.3389/fpls.2015.00584
Kooman-Gersmann M. 1998. The AVR9 elicitor peptide of the tomato pathogen Cladosporium fulvum: molecular aspects of recognition. Wageningen University and Research. 117 p.
Kooman-Gersmann M., Honee G., Bonnema G., De Wit P.J. 1996. A high-affinity binding site for the AVR9 peptide elicitor of Cladosporium fulvum is present on plasma membranes of tomato and other solanaceous plants. The Plant Cell 8(5): 929-938. https://doi.org/10.1105/tpc.8.5.929
Kooman-Gersmann M., Vogelsang R., Vossen P., van Den Hooven H.W., Mahé E., Honée G., de Wit P.J. 1998. Correlation between binding affinity and necrosis-inducing activity of mutant AVR9 peptide elicitors. Plant Physiology 117(2): 609-618. https://doi.org/10.1104/pp.117.2.609
Liebrand T.W., van den Berg G.C., Zhang Z., Smit P., Cordewener J.H., America A.H., Sklenar J., Jones A.M., Tameling W.I., Robatzek S., Thomma B.P. 2013. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proceedings of the National Academy of Sciences 110(24): 10010-10015. https://doi.org/10.1073/pnas.1220015110
Liebrand T.W., van den Burg H.A., Joosten M.H. 2014. Two for all: receptor-associated kinases SOBIR1 and BAK1. Trends in Plant Science 19(2): 123-132. https://doi.org/10.1016/j.tplants.2013.10.003
Ligterink W., Kroj T., Nieden U.Z., Hirt H., Scheel D. 1997. Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276(5321): 2054-2057. https://doi.org/10.1126/science.276.5321.2054
Luderer R., Rivas S., Nürnberger T., Mattei B., Van den Hooven H.W., Van der Hoorn R.A., Romeis T., Wehrfritz J.M., Blume B., Nennstiel D., Zuidema D. 2001. No evidence for binding between resistance gene product Cf-9 of tomato and avirulence gene product AVR9 of Cladosporium fulvum. Molecular Plant-Microbe Interactions 14(7): 867-876. https://doi.org/10.1094/MPMI.2001.14.7.867
Mach J. 2014. N-Glycosylation of a chitin binding effector allows a fungal pathogen to evade the plant immune response. The Plant Cell 26(3): 844. https://doi.org/10.1105/tpc.114.125120
Maras M., van Die I., Contreras R., van den Hondel C.A. 1999. Filamentous fungi as production organisms for glycoproteins of bio-medical interest. Glycoconjugate Journal 16(2): 99-107. https://doi.org/10.1023/A:1026436424881
Marín-Menguiano M., Moreno-Sánchez I., Barrales R.R., Fernández-Álvarez A., Ibeas J.I. 2019. N-glycosylation of the protein disulfide isomerase Pdi1 ensures full Ustilago maydis virulence. PLoS Pathogens 15(11): e1007687. https://doi.org/10.1371/journal.ppat.1007687
Mentlak T.A., Kombrink A., Shinya T., Ryder L.S., Otomo I., Saitoh H., Terauchi R., Nishizawa Y., Shibuya N., Thomma B.P. 2012. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. The Plant Cell Online 24(1): 322-335. https://doi.org/10.1105/tpc.111.092957
Mesarich C.H., Griffiths S.A., van der Burgt A., Ökmen B., Beenen H.G., Etalo D.W., Joosten M.H., de Wit P.J. 2014. Transcriptome sequencing uncovers the Avr5 avirulence gene of the tomato leaf mold pathogen Cladosporium fulvum. Molecular Plant-Microbe Interactions 27(8): 846-857. https://doi.org/10.1094/MPMI-02-14-0050-R
Milkowski C., Strack D. 2004. Serine carboxypeptidase-like acyltransferases. Phytochemistry 65(5): 517-524. https://doi.org/10.1016/j.phytochem.2003.12.018
Misas-Villamil J.C., van der Hoorn R.A. 2008. Enzyme–inhibitor interactions at the plant–pathogen interface. Current Opinion in Plant Biology 11(4): 380-388. https://doi.org/10.1016/j.pbi.2008.04.007
Mueller A.N., Ziemann S., Treitschke S., Aßmann D., Doehlemann G. 2013. Compatibility in the Ustilago maydis–maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathogens 9(2): e1003177. https://doi.org/10.1371/journal.ppat.1003177
Mugford S.T., Qi X., Bakht S., Hill L., Wegel E., Hughes R.K., Papadopoulou K., Melton R., Philo M., Sainsbury F., Lomonossoff G.P. 2009. A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. The Plant Cell 21(8): 2473-2484. https://doi.org/10.1105/tpc.109.065870
Naik A.S., Waghmare R. 2020. Application of glycosyl hydrolases in food industry. In: Shrivastava, S. (eds) Industrial Applications of Glycoside Hydrolases . Springer, Singapore. https://doi.org/10.1007/978-981-15-4767-6_8
Ökmen B., Etalo D.W., Joosten M.H., Bouwmeester H.J., de Vos R.C., Collemare J., de Wit P.J. 2013. Detoxification of α‐tomatine by Cladosporium fulvum is required for full virulence on tomato. New Phytologist 198(4): 1203-1214. https://doi.org/10.1111/nph.12208
Pallaghy P.K., Norton R.S., Nielsen K.J., Craik D.J. 1994. A common structural motif incorporating a cystine knot and a triple-stranded β-sheet in toxic and inhibitory polypeptides. Protein Science 3(10): 1833-1839. https://doi.org/10.1002/pro.5560031022
Paulson J.C. 1989. Glycoproteins: what are the sugar chains for? Trends in Biochemical Sciences 14(7): 272-276. https://doi.org/10.1016/0968-0004(89)90062-5
Rooney H.C., Van't Klooster J.W., van der Hoorn R.A., Joosten M.H., Jones J.D., de Wit P.J. 2005. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308(5729): 1783-1786. https://doi.org/10.1126/science.1111404
Shabab M., Shindo T., Gu C., Kaschani F., Pansuriya T., Chintha R., Harzen A., Colby T., Kamoun S., van der Hoorn R.A. 2008. Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato. The Plant Cell 20(4): 1169-1183. https://doi.org/10.1105/tpc.107.056325
Stergiopoulos I., de Wit P.J. 2009. Fungal effector proteins. Annual Review of Phytopathology 47(1): 233-263. https://doi.org/10.1146/annurev.phyto.112408.132637
van den Ackerveken G., Vossen P., De Wit J. 1993. The AVR9 race-specific elicitor of Cladosporium fulvum is processed by endogenous and plant proteases. Plant Physiology 103(1): 91-96. https://doi.org/10.1104/pp.103.1.91
van den Burg H.A., Harrison S.J., Joosten M.H., Vervoort J., de Wit P.J. 2006. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Molecular Plant-Microbe Interactions 19(12): 1420-1430. https://doi.org/doi:10.1094/MPMI-19-1420
van den Hooven H.W., van den Burg H.A., Vossen P., Boeren S., de Wit P.J., Vervoort J. 2001. Disulfide bond structure of the AVR9 elicitor of the fungal tomato pathogen Cladosporium fulvum: evidence for a cystine knot. Biochemistry 40(12): 3458-3466. https://doi.org/10.1021/bi0023089
van der Hoorn R.A. 2008. Plant proteases: from phenotypes to molecular mechanisms. Annual Review of Plant Biology 59(1): 191-223. https://doi.org/10.1146/annurev.arplant.59.032607.092835
van der Hoorn R.A., Jones J.D. 2004. The plant proteolytic machinery and its role in defence. Current Opinion in Plant Biology 7(4): 400-407. https://doi.org/10.1016/j.pbi.2004.04.003
van der Hoorn R.A., Wulff B.B., Rivas S., Durrant M.C., Van Der Ploeg A., De Wit P.J., Jones J.D. 2005. Structure–function analysis of cf-9, a receptor-like protein with extracytoplasmic leucine-rich repeats. The Plant Cell 17(3): 1000-1015. https://doi.org/10.1105/tpc.104.028118
van Esse H.P., Bolton M.D., Stergiopoulos I., de Wit P., Thomma B. 2007. The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Molecular Plant-Microbe Interactions 20(9): 1092-1101. https://doi.org/10.1094/MPMI-20-9-1092
van Esse H.P., Thomma B.P., van't Klooster J.W., de Wit P.J. 2006. Affinity-tags are removed from Cladosporium fulvum effector proteins expressed in the tomato leaf apoplast. Journal of Experimental Botany 57(3): 599-608. https://doi.org/10.1093/jxb/erj044
van Esse H.P., Van't Klooster J.W., Bolton M.D., Yadeta K.A., van Baarlen P., Boeren S., Vervoort J., de Wit P.J., Thomma B.P. 2008. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. The Plant Cell 20(7): 1948-1963. https://doi.org/10.1105/tpc.108.059394
van Kan J.A., Van den Ackerveken G.F., De Wit P.J. 1991. Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Molecular Plant-Microbe Interactions 4(1): 52-59. https://doi.org/10.1094/mpmi-4-052
Vervoort J., van den Hooven H.W., Berg A., Vossen P., Vogelsang R., Joosten M.H., de Wit P.J. 1997. The race-specific elicitor AVR9 of the tomato pathogen Cladosporium fulvum: a cystine knot protein: sequence-specific 1H NMR assignments, secondary structure and global fold of the protein. FEBS Letters 404(2-3): 153-158. https://doi.org/10.1016/S0014-5793(97)00117-8
Zhou A., Li J. 2005. Arabidopsis BRS1 is a secreted and active serine carboxypeptidase. Journal of Biological Chemistry 280(42): 35554-35561. https://doi.org/10.1074/jbc.M503299200 | ||
آمار تعداد مشاهده مقاله: 118 تعداد دریافت فایل اصل مقاله: 179 |