تعداد نشریات | 23 |
تعداد شمارهها | 368 |
تعداد مقالات | 2,890 |
تعداد مشاهده مقاله | 2,566,214 |
تعداد دریافت فایل اصل مقاله | 1,821,871 |
Expression Pattern of NHX1 and BADH2 Genes of Quinoa (Chenopodium quinoa Wild.) under Drought Stress and Nutrient Uptake | ||
Agrotechniques in Industrial Crops | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 18 بهمن 1403 اصل مقاله (645.86 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22126/atic.2024.11085.1161 | ||
نویسنده | ||
Mohamad Forouzandeh* | ||
Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran | ||
چکیده | ||
Quinoa is one of the plants due to its high nutritional value its cultivated area is expanding rapidly in the world. These findings on the stress tolerance of quinoa, focusing on key genes explain drought signal transduction pathways. This perception can raise the comprehension of drought tolerance in quinoa. Betaine Aldehyde Dehydrogenase (BADH) and Na+/H+ antiporter (NHX1) were evaluated in response to drought and fertilizer stresses in quinoa. The expression of NHX gene was highly upregulated compared with BADH gene under drought stress. The results provide a new insight into the function of NHX and BADH in plant mineral nutrition. Under fertilizer-treated conditions NHX gene was highly upregulated compared with BADH gene. Also NPK fertilizer induces a higher tolerance ability in quinoa. The evaluation of network topology showed that NHX1 gene had the maximum number of intergenic connections with SOS1, SOS3, and AVP1 genes in the network. The AVP1 gene forms complex in cooperation with SOS mutants and plants will be able to withstand higher salt stress as well as water deficit in response. Our finding reinforces the idea that the favorable NHX allele must be ongoingly selected for quinoa growth under unpredictable future climate worsening. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Co-expression network؛ Drought stress؛ Fertilizer؛ NPK؛ Vermicompost | ||
مراجع | ||
Abbas K., Li J., Gong B., Lu Y., Wu X., Lü G., Gao H. 2023. Drought stress tolerance in vegetables: The functional role of structural features, key gene pathways, and exogenous hormones. International Journal of Molecular Sciences 24(18): 13876. https://doi.org/10.3390/ijms241813876
Assenov Y., Ramírez F., Schelhorn S.E., Lengauer T., Albrecht M. 2007. Computing topological parameters of biological networks. Bioinformatics 24(2): 282-284. https://doi.org/10.1093/bioinformatics/btm554
Ayadi M., Martins V., Ben Ayed R., Jbir R., Feki M., Mzid R., Géros H., Aifa S., Hanana M. 2020. Genome wide identification, molecular characterization, and gene expression analyses of grapevine NHX antiporters suggest their involvement in growth, ripening, seed dormancy, and stress response. Biochemistry Genetic 58(1): 102-128. https://doi.org/10.1007/s10528-019-09930-4
Calzone A., Cotrozzi L., Pellegrini E., Lorenzini G., Nali C., Maathuis F. 2021. Can the transcriptional regulation of NHX1, SOS1 and HKT1 genes handle the response of two pomegranate cultivars to moderate salt stress?: Salt-tolerance of two pomegranate cultivars. Scientia Horticulturae 288: 110309. https://doi.org/10.1016/j.scienta.2021.110309
Chai H., Guo J., Zhong Y., Hsu C.C., Zou C., Wang P., Shi H. 2020. The plasma‐membrane polyamine transporter PUT3 is regulated by the Na+/H+ antiporter SOS1 and protein kinase SOS2. New Phytologist 226(3): 785-797. https://doi.org/10.1111/nph.16407
Demirkol G. 2020. The role of BADH gene in oxidative, salt, and drought stress tolerances of white clover. Turkish Journal of Botany 44(3): 214-221. https://doi.org/10.3906/bot-2002-28
Forouzandeh M., Parsa S., Mahmoodi S., Izanloo A. 2023. Physiological, biochemical, and molecular responses of quinoa (Chenopodium quinoa Willd.) to elicitors under drought stress. Plant Molecular Biology Reporter 42: 515-531. https://doi.org/10.1007/s11105-023-01393-7
Gharibi F., Fahmideh L., Fooladvand Z. 2018. Isolation and sequencing of gene related to Na+/H+ anti-porter of vacuolar membrane isolated from halophytes plant (Kochia scoparia L.). Agricultural Biotechnology 9(2): 51-60. (In Farsi). https://doi.org/10.22084/ab.2018.12856.1334
Haroon U., Khizar M., Liaquat F., Ali M., Akbar M., Tahir K., Munis M.F.H. 2021. Halotolerant plant growth-promoting rhizobacteria induce salinity tolerance in wheat by enhancing the expression of SOS genes. Journal of Plant Growth Regulation 41: 2435-2448. https://doi.org/10.1007/s00344-021-10457-5
He Z., Huang Z. 2013. Expression analysis of LeNHX1 gene in mycorrhizal tomato under salt stress. Journal of Microbiology 51: 100-104. https://doi.org/10.1007/s12275-013-2423-3
Huang J., Liu J., Jiang F., Liu M., Chen Z., Zhou R., Wu Z. 2024. Identification and expression pattern analysis of the SOS gene family in tomatoes. Agronomy 14(4): 773. https://doi.org/10.3390/agronomy14040773
Huang Y., Zhang X.X., Li Y.H., Ding J.Z., Du H.M., Zhuo Z.H., Zhou L.N., Chan L.I., Gao S.B., Cao M.J., Lu Y.L. 2018. Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays. Journal of Integrative Agriculture 17(12): 2612-2623. https://doi.org/10.1016/S2095-3119(18)61998-7
Huertas R., Rubio L., Cagnac O., García-Sánchez M.J., Alché Jde D., Venema K., Fernández J.A., Rodríguez-Rosales M.P. 2013. The K+/H+ antiporter LeNHX2 increases salt tolerance by improving K+ homeostasis in transgenic tomato. Plant, Cell & Environment 36(12): 2135-2149. https://doi.org/10.1111/pce.12109
Jaikishun S., Li W., Yang Z., Song S. 2019. Quinoa: In perspective of global challenges. Agronomy 9(4): 176. https://doi.org/10.3390/agronomy9040176
Japelaghi R.H., Haddad R., Garoosi G.A. 2011. Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides. Molecular Biotechnology 49(2): 129-137. https://doi.org/10.1007/s12033-011-9384-8
Khare T., Joshi S., Kaur K., Srivastav A., Shriram V., Srivastava A.K., Suprasanna P., Kumar V. 2021. Genome-wide in silico identification and characterization of sodium-proton (Na+/H+) antiporters in Indica rice. Plant Gene 26: 100280. https://doi.org/10.1016/j.plgene.2021.100280
Kirch H.H., Schlingensiepen S., Kotchoni S., Sunkar R., Bartels D. 2005. Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in Arabidopsis thaliana. Plant Molecular Biology 57: 315-332. https://doi.org/10.1007/s11103-004-7796-6
Kumar T., Uzma Khan M.R., Abbas Z., Ali G.M. 2014. Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Molecular Biotechnology 56: 199-209. https://doi.org/10.1007/s12033-013-9695-z
Li W., Du J., Feng H., Wu Q., Xu G., Shabala S., Yu L. 2020. Function of NHX-type transporters in improving rice tolerance to aluminum stress and soil acidity. Planta 251: 71. https://doi.org/10.1007/s00425-020-03361-x
Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4): 402-408. https://doi.org/10.1006/meth.2001.1262
Luo H., Duan M., He L., Yang S., Zou Y., Tang X. 2021. A new organic-inorganic compound fertilizer for improving growth, yield, and 2-acetyl-1-pyrroline biosynthesis of fragrant rice. Agriculture 11(11): 1121. https://doi.org/10.3390/agriculture11111121
Mangalam H., Stewart J., Zhou J., Schlauch K., Waugh M., Chen G., Farmer A.D., Colello G., Weller J.W. 2001. GeneX: An open source gene expression database and integrated tool set. IBM System Journal 40(2): 552-569. https://doi.org/10.1147/sj.402.0552
Mohammed L.I., Farhood A.N. 2020. Detection of gene badh2 in charge of aromatics in Iraqi rice varieties. Plant Archives 20(1): 1077-1084.
Nikhil P.T., Faiz U., Mohapatra S. 2023. The drought-tolerant rhizobacterium, Pseudomonas putida AKMP7, suppresses polyamine accumulation under well-watered conditions and diverts putrescine into GABA under water-stress, in Oryza sativa. Environmental and Experimental Botany 211: 105377. https://doi.org/10.1016/j.envexpbot.2023.105377
Pandya P., Kumar S., Sakure A.A., Rafaliya R., Patil G.B. 2023. Zinc oxide nanopriming elevates wheat drought tolerance by inducing stress-responsive genes and physio-biochemical changes. Current Plant Biology 35: 100292. https://doi.org/10.1016/j.cpb.2023.100292
Paul A., Chatterjee A., Subrahmanya S., Shen G., Mishra N. 2021. NHX gene family in Camellia sinensis: In-silico genome-wide identification, expression profiles, and regulatory network analysis. Frontiers in Plant Science 12: 777884. https://doi.org/10.3389/fpls.2021.777884
Rostami M. 2018. Effect of salinity stress and salicylic acid on physiological characteristics of Lallemantia royleana. Journal of Plant Research 31(2): 208-220. (In Farsi). https://dor.isc.ac/dor/20.1001.1.23832592.1397.31.2.1.9
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 13(11): 2498-2504. https://doi.org/10.1101/gr.1239303
Soleimani M.R., Kafi M., Ziae M., Shabahang J. 2008. Effect of limited irrigation with saline water on forage of two local populations of Kochia scoparia L. Agriculture Science Technology 22(2): 307-317. (In Farsi). https://doi.org/10.22067/jsw.v0i22.1028
Sun Y., Chen H.Y., Jin L., Wang C., Zhang R., Ruan H., Yang J. 2020. Drought stress induced increase of fungi: Bacteria ratio in a poplar plantation. Catena 193: 104607. https://doi.org/10.1016/j.catena.2020.104607
Szklarczyk D., Morris J.H., Cook H., Kuhn M., Wyder S., Simonovic M., Santos A., Doncheva N.T., Roth A., Bork P., Jensen L.J., von Mering C. 2017. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research 45(D1): D362-D368. https://doi.org/10.1093/nar/gkw937
Tang Y., Sun X., Wen T., Liu M., Yang M., Chen X. 2017. Implications of terminal oxidase function in regulation of salicylic acid on soybean seedling photosynthetic performance under water stress. Plant Physiology and Biochemistry 112: 19-28. https://doi.org/10.1016/j.plaphy.2016.11.016
Wang B., Zhai H., He S.Z., Zhang H., Ren Z., Zhang D., Liu Q. 2016. A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweet potato. Scientia Horticulturae 201: 153-166. https://doi.org/10.1016/j.scienta.2016.01.027
Wang Y., Feng H., Du J., Liu X., Wang H., Dai X., Xu G., Yu L. 2023. Ectopic co-expression of endosome located V-ATPase subunit gene and NHX transporter gene from Helianthus tuberosus enhances rice growth and nutrient uptake. Environmental and Experimental Botany 209: 105302. https://doi.org/10.1016/j.envexpbot.2023.105302
Yihong J., Zhen L., Chang L., Ziying S., Ning Z., Meiqing S., Yuhui L., Lei W. 2024. Genome-wide identification and drought stress-induced expression analysis of the NHX gene family in potato. Frontiers in Genetics 15: 1396375. https://doi.org/10.3389/fgene.2024.1396375
Ying W., Huimin F., Jia D., Xinxin L., Haiya W., Xiaoli D., Guohua X., Ling Y. 2023. Ectopic co-expression of endosome located V-ATPase subunit gene and NHX transporter gene from Helianthus tuberosus enhances rice growth and nutrient uptake. Environmental and Experimental Botany 209: 105302. https://doi.org/10.1016/j.envexpbot.2023.105302
Yokoi S., Quintero F.J., Cubero B., Ruiz M.T., Bressan R.A., Hasegawa P.M., Pardo J.M. 2002. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. The Plant Journal 30(5): 529-539. https://doi.org/10.1046/j.1365-313X.2002.01309.x | ||
آمار تعداد مشاهده مقاله: 21 تعداد دریافت فایل اصل مقاله: 29 |