تعداد نشریات | 23 |
تعداد شمارهها | 383 |
تعداد مقالات | 3,036 |
تعداد مشاهده مقاله | 2,760,812 |
تعداد دریافت فایل اصل مقاله | 1,950,058 |
Evaluation of General and Specific Combining Ability and Genetic Parameters for Morphological Traits in Open-Field Tomato (Solanum lycopersicum L.) | ||
Agrotechniques in Industrial Crops | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 03 خرداد 1404 اصل مقاله (497.36 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22126/atic.2025.10512.1147 | ||
نویسندگان | ||
Mitra Sadeghi1؛ Abdolali Shojaeiyan* 1؛ Mostafa Khodadadi2 | ||
1Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran. | ||
2Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran | ||
چکیده | ||
The tomato (Solanum lycopersicum L.), a globally recognized fruit, stands as a pivotal industrial crop, underpinning a vast processing industry. The genetics and inheritance knowledge about target traits are required for improving tomato hybrids. Therefore, the present study was conducted to evaluate gene actions and the combining ability of tomato parental lines. 20 hybrids derived from diallel crossing between 5 parents and 4 commercial hybrids were evaluated. Analysis of variance revealed the presence of a significant general combining ability (GCA) effect for all traits and a significant specific combining ability (SCA) effect for fruit dry weight and fruit average weight. Despite the nuclear genome effects, maternal effects, including maternal nuclear and cytoplasmic effects, played a significant role in controlling fruit dry weight, fruit volume, fruit average weight, fruit diameter, and fruit length-to-diameter ratio traits. The maternal effect was high and significant for fruit volume (p<0.001), fruit diameter, and fruit average weight. The GCA/SCA ratio ranged from 0.65 to 1, indicating the greater effect of additive gene actions in controlling traits. P1 and P5 parents exhibited the highest GCA for fruit number average fruit weight, and fruit volume traits, respectively. Furthermore, the R1×3 hybrid was identified as the superior combiner for fruit number per plant and average fruit weight traits. Overall, additive gene action effects had a significant proportion in the inheritance of the traits, and maternal genetic effects showed a great impact on the regulation of tomato fruit size-related traits. Consequently, the female parent fruit shape and size should be considered in tomato breeding programs. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Combining ability؛ Gene operation؛ Heritability؛ Hybrid؛ Tomato | ||
مراجع | ||
Amr A., Raie W. 2022. Tomato components and quality parameters, A review. Jordan Journal of Agricultural Sciences 18(3): 199-220. https://doi.org/10.35516/jjas.v18i3.444
Anonymous. 2022. Agricultural statistics of 2021. Ministry of Agriculture Jihad, Iran. (In Farsi). https://www.maj.ir/
Azzi L., Deluche C., Gévaudant F., Frangne N., Delmas F., Hernould M., Chevalier C. 2015. Fruit growth-related genes in tomato. Journal of Experimental Botany 66(4): 1075-1086. https://doi.org/10.1093/jxb/eru527
Backer J. 1978. Issues in diallel analysis. Crop Science 18(4): 533-536. https://doi.org/10.2135/cropsci1978.0011183X001800040001x
Biswas V.R., Bhatt R.P., Kumar N. 2011. Gene action in tomato (Lycopersicon esculentum Mill) under open and protected environments. Vegetable Science 38(02): 206-208. https://isvsvegsci.in/index.php/vegetable/article/view/704
Blank A.F., Santa Rosa Y.R., de Carvalho Filho J.L.S., dos Santos C.A., Arrigoni-Blank M.F., Niculau E.S., Alves P.B. 2012. A diallel study of yield components and essential oil constituents in basil (Ocimum basilicum L.). Industrial Crops and Products 38: 93-98. https://doi.org/10.1016/j.indcrop.2012.01.015
Garg N., Cheema D.S., Dhatt A.S. 2008. Genetics of yield, quality and shelf life characteristics in tomato under normal and late planting conditions. Euphytica 159: 275-288. https://doi.org/10.1007/s10681-007-9486-3
Griffing B. 1956. A generalised treatment of the use of diallel crosses in quantitative inheritance. Heredity 10(1): 31-50. https://doi.org/10.1038/hdy.1956.2
Javed A., Nawab N.N., Gohar S., Akram A., Javed K., Sarwar M., Tabassum M.I., Ahmad N., Mallhi A.R. 2022. Genetic analysis and heterotic studies in tomato (Solanum lycopersicum L.) hybrids for fruit yield and its related traits. SABRAO Journal of Breeding and Genetics 54(3): 492-501. https://doi.org/10.54910/sabrao2022.54.3.3
Khodadadi M., Dehghani H., Jalali Javaran M. 2017. Quantitative genetic analysis reveals potential to genetically improve fruit yield and drought resistance simultaneously in coriander. Frontiers in Plant Science 8: 568. https://doi.org/10.3389/fpls.2017.00568
Kumar R., Srivastava K., Singh N.P., Vasistha N.K., Singh R.K., Singh M.K. 2013. Combining ability analysis for yield and quality traits in tomato (Solanum lycopersicum L.). Journal of Agricultural Science 5(2): 213. https://doi.org/10.5539/jas.v5n2p213
Laurentin Táriba H.E. 2023. Population management and genetic improvement. Agricultural Genetics. Springer, Cham. https://doi.org/10.1007/978-3-031-37192-9_14
Mishra A. 2022. Recent developments in breeding approaches of tomato (Solanum lycopersicum L.), A review. International Journal of Farm Sciences 12(1): 1-6. https://doi.org/10.5958/2250-0499.2022.00002.7
Nezami S., Nemati S.H., Arouiee H., Kafi M. 2020. Half diallel analysis of related traits to yield and fruit quality in tomato lines. Iranian Journal of Horticultural Science 52(4): 1011-1025. (In Farsi). https://doi.org/10.22059/ijhs.2020.296125.1759
Nie H., Yang X., Zheng S., Hou L. 2024. Gene-based developments in improving quality of tomato: Focus on firmness, shelf life, and pre-and post-harvest stress adaptations. Horticulturae 10(6): 641. https://doi.org/10.3390/horticulturae10060641
Palmgren M.G., Edenbrandt A.K., Vedel S.E., Andersen M.M., Landes X., Østerberg J.T., Falhof J., Olsen L.I., Christensen S.B., Sandøe P., Gamborg C., Kappel K., Thorsen B.J., Pagh P. 2015. Are we ready for back-to-nature crop breeding? Trends in Plant Science 20(3): 155-164. https://doi.org/10.1016/j.tplants.2014.11.003
Pavan M.P., Gangaprasad S. 2022. Studies on mode of gene action for fruit quality characteristics governing shelf life in tomato (Solanum lycopersicum L.). Scientia Horticulturae 293: 110687. https://doi.org/10.1016/j.scienta.2021.110687
Prajapati S., Tiwari A., Kadwey S., Jamkar T. 2015. Genetic variability, heritability and genetic advance in tomato (Solanum lycopersicon Mill.). International Journal of Agriculture, Environment and Biotechnology 8(2): 245-251. https://doi.org/10.5958/2230-732X.2015.00031.5
Rasheed A., Ilyas M., Khan T.N., Mahmood A., Riaz U., Chattha M.B., Al Kashgry N.A., Binothman N., Hassan M.U., Wu Z., Qari S.H. 2023. Study of genetic variability, heritability, and genetic advance for yield-related traits in tomato (Solanum lycopersicon MILL.). Frontiers in Genetics 13: 1030309. https://doi.org/10.3389/fgene.2022.1030309
Shankar A., Reddy R.V., Sujatha M., Pratap M. 2013. Combining ability analysis to identify superior F1 hybrids for yield and quality improvement in tomato (Solanum lycopersicum L.). Agrotechnology 2(3): 1000114. https://doi.org/10.4172/2168-9881.1000114
Tester M., Langridge P. 2010. Breeding technologies to increase crop production in a changing world. Science 327(5967): 818-822. https://doi.org/10.1126/science.1183700
Zhang Y., Kang M.S., Lamkey K.R. 2005. DIALLEL‐SAS05: A comprehensive program for Griffing's and Gardner–Eberhart analyses. Agronomy Journal 97(4): 1097-1106. https://doi.org/10.2134/agronj2004.0260 | ||
آمار تعداد مشاهده مقاله: 5 تعداد دریافت فایل اصل مقاله: 10 |