تعداد نشریات | 23 |
تعداد شمارهها | 395 |
تعداد مقالات | 3,120 |
تعداد مشاهده مقاله | 2,841,041 |
تعداد دریافت فایل اصل مقاله | 1,989,510 |
Genotype–Trait Interaction Analysis in Camelina Doubled Haploid Lines Using the GGE Biplot Method | ||
Agrotechniques in Industrial Crops | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 20 خرداد 1404 اصل مقاله (571.63 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22126/atic.2025.11934.1209 | ||
نویسندگان | ||
Hossein Ahmadi-Ochtapeh* 1؛ Hossein Rostami Ahmadvandi2؛ Abdol Aziz Haghighi3؛ Masoumeh Kheirgoo1 | ||
1Crop and Horticultural Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran | ||
2Dryland Agriculture Research Institute (DARI), Sararood Branch, Agriculture Research, Education and Extension Organization (AREEO), Kermanshah, Iran | ||
3Plant Protection Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran | ||
چکیده | ||
Camelina (Camelina sativa), an oilseed crop with high-quality oil, holds significant potential for food and biofuel production. Identifying high-yielding, stable genotypes is key for camelina breeding in dryland conditions. This study used the genotype-trait (GT) biplot method to explore trait relationships in camelina doubled haploid (DH) lines. Fifteen DH lines and Soheil variety were assessed in Gonbad-e Kavous under dryland conditions using a randomized complete block design with three replications in 2022. Traits including days to maturity, plant height, branching height, number of sub-branches, number of pods on the main branch, number of pods on the sub-branch, number of pods per plant, number of seeds per pod, thousand-kernel weight, seed yield, oil content, and oil yield were measured. The GT biplot accounted for 53% of total variance, with the first and second principal components explaining 28.2% and 24.8%, respectively. The GT biplot's polygonal representation identified G1 and G8 as the top genotypes for seed yield, oil yield, plant height and branching height traits. The GT biplot analysis showed positive correlations between seed and oil yields with plant height, branching height, number of pods on the sub-branch, the number of pods per plant, and the number of seeds per pod. Selecting these traits is expected to enhance seed and oil yields, which were positively correlated, whereas the association between seed yield and thousand-kernel weight was weak. The traits closest to the hypothesized ideal were the number of seeds per pod, number of pods per plant, number of pods on the sub-branch, and branching height. G15, G13, G5, and G1 were the most desirable across all evaluated traits, while G10 and G11 were the least favorable. G15 and G13 showed the greatest stability. Trait-based selection plays a crucial role in enhancing seed and oil yields in camelina breeding programs under dryland conditions. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Camelina؛ Dryland؛ GGE biplot methods؛ GT biplot؛ Seed yield | ||
مراجع | ||
Adedeji I., Ajayi A.T., Osekita O.S., Ogunruku K.L. 2020. Genotype × Trait biplot analysis for assessing character association in Cowpea (Vigna unguiculata L. Walp). South Asian Research Journal of Biology and Applied Biosciences 2(1): 8-15. https://doi.org/10.36346/sarjbab.2020.v02i01.002
Akcura M., Kokten K. 2017. Variations in grain mineral concentrations of Turkish wheat landraces germplasm. Quality Assurance and Safety of Crops and Foods 9(2): 153-159. https://doi.org/10.3920/QAS2016.0886
Berti M., Gesch R., Eynck C., Anderson J., Cermak S. 2016. Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products 94: 690-710. https://doi.org/10.1016/j.indcrop.2016.09.034
Chen Y.R., Lübberstedt T., Frei U. 2024. Development of doubled haploid inducer lines facilitates selection of superior haploid inducers in maize. Frontiers in Plant Science 14: 1320660. https://doi.org/10.3389/fpls.2023.1320660
Ghidoli M., Frazzini S., Benedetti S.D., Sangiorgio S., Landoni M., Scarafoni A., Rossi L., Pilu R. 2023. Constitution of a Camelina sativa L. synthetic population and agronomic comparison between spring and winter cultivation in north Italy. Agronomy 13: 1562. https://doi.org/10.3390/agronomy13061562
Göre M., kurt O. 2021. Evaluation of camelina (Camelina sativa) genotypes grown in winter at different sowing dates in northern Turkey ecological conditions in terms of yield and oil ratio. Agrotechniques in Industrial Crops 1(4): 154-159. https://doi.10.22126/atic.2022.7231.1032
Ma B.L., Yan W., Dwyer L.M., Frégeau-Reid J., Voldeng H.D., Dion Y., Nass H. 2004. Graphic analysis of genotype, environment, nitrogen fertilizer, and their interactions on spring wheat yield. Agronomy Journal 96: 169-180. https://doi.org/10.2134/agronj2004.1690
Masella P., Martinelli T., Galasso I. 2014. Agronomic evaluation and phenotypic plasticity of Camelina sativa growing in Lombardia, Italy. Crop & Pasture Science 65: 453. https://doi.org/10.1071/CP14025
Mousavi S.M.N., Bojtor C., Illés Á., Nagy J. 2021. Genotype by trait interaction (GT) in maize hybrids on complete fertilizer. Plants 10: 2388. https://doi.org/10.3390/plants10112388
Obour A.K., Obeng E., Mohammad Y.A., Ciamitti I.A., Durrett T.P., Aznar-Moreno J.A., Chen C. 2017. Camelina seed yield and fatty acids as influenced by genotype and environment. Agronomy Journal 109(3): 947-956. https://doi.org/10.2134/agronj2016.05.0256
Obour A.K., Sintim H.Y., Obeng E., Zheljazkov D.V. 2015. Oilseed camelina (Camelina sativa L Crantz): Production systems, prospects and challenges in the USA Great Plains. Advances in Plants & Agriculture Research 2: 1-10. https://doi.org/10.15406/apar.2015.02.00043
Porkabiri Z., Sabaghnia N., Ranjbar R., Hatami Maleki H. 2019. Morphological traits and resistance to Egyptian broomrape weed (Orobanche aegyptiaca Pers.) in tobacco under greenhouse condition. Australian Journal of Crop Science 13(02): 287-293. https://doi.org/10.21475/AJCS.19.13.02.P1429
Rahimi M., Asadi-Gharneh H.A., Sabaghnia N. 2019. Evaluation of some traits in local Iranian quince (Cydonia Oblonga Miller) genotypes. International Journal of Fruit Science 19: 397-412. https://doi.org/10.1080/15538362.2018.1552231
Rostami Ahmadvandi H., Faghihi A. 2021. Adapted oilseed crops with the ability to grow economically in dryland conditions in Iran. Agrotechniques in Industrial Crops 1(3): 122-128. https://doi.org/10.22126/atic.2021.6518.1015
Saeidnia F., Taherian M., Nazeri S.M. 2023. Graphical analysis of multi-environmental trials for wheat grain yield based on GGE-biplot analysis under diverse sowing dates. BMC Plant Biology 23: 198. https://doi.org/10.1186/s12870-023-04197-9
Shahadati-Moghaddam Z., Hosseini A., Soorni J., Trojak-Goluch A. 2016. Development of tobacco (Nicotiana tabacum L.) doubled haploid lines resistant topotato virus Y0. Indian Journal of Genettics and Plant Breeding 76: 333-340. https://doi.org/10.5958/0975-6906.2016.00050.X
Shojaei S.H., Ansarifard I., Mostafavi K., Bihamta M.R., Zabet M. 2022. GT biplot analysis for yield and related traits in some sunflower (Helianthus annuus L.) genotypes. Journal of Agriculture and Food Research 10: 100370. https://doi.org/10.1016/j.jafr.2022.100370
Solis A., Vidala I., Paulinoa L., Johnson B.L., Berti M.T. 2013. Camelina seed yield response to nitrogen, sulfur, and phosphorus fertilizer in South central Chile. Industrial Crops and Products 44: 132-138. https://doi.org/10.1016/j.indcrop.2012.11.005
Soorni J., Shobbar Z.S., Kahrizi D., Zanetti F., Sadeghi K., Rostampour S., Kovács P.G., Kiss A., Mirmazloum I. 2022. Correlational analysis of agronomic and seed quality traits in Camelina sativa doubled haploid lines under rain-fed condition. Agronomy 12: 359. https://doi.org/10.3390/agronomy12020359
Stansluos A.A.L., Öztürk A., Niedbała G., Türko˘glu A., Halilo˘glu K., Szulc P., Omrani A., Wojciechowski T., Piekutowska M. 2023. Genotype–trait (GT) biplot analysis for yield and quality stability in some sweet corn (Zea mays L. Saccharata Sturt.) Genotypes. Agronomy 13: 1538. https://doi.org/10.3390/agronomy13061538
Subaşı İ., Arslan Y., Güler S., Hatipoğlu H., Abrak S., Kӧser A. 2021. Oil and protein stability in some camelina (Camelina sativa L. Crantz) genotypes. Turkish Journal of Agriculture - Food Science and Technology 9(8): 1368-1374. https://doi.org/10.24925/turjaf.v9i8.1368-1374.4164
Tepfer M., Hurel A., Tellier F., Jenczewski E. 2020. Evaluation of the progeny produced by interspecific hybridization between Camelina sativa and C. microcarpa. Annals of Botany 125: 993-1002. https://doi.org/10.1093/aob/mcaa026
Toncea I., Necseriu D., Prisecaru T., Balint L.N., Ghilvacs M.I., Popa M. 2013. The seed's and oil composition of camelia - first romanian cultivar of camelina (Camelina sativa L.) Crantz. Romanian Biotechnological Letters 18(5): 8594-8602.
Vollmann J., Moritz T., Kargl C., Baumgartner S., Wagentristl H. 2007. Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Industrial Crop and Products 26(3): 270-277. https://doi.org/10.1016/j.indcrop.2007.03.017
Wang Y., Yu J., Gao Y., Li Z., Kim D.S., Chen M., Fan Y., Zhang H., Yan X., Zhang C.J. 2022. Agronomic evaluation of shade tolerance of 16 spring Camelina sativa (L.) Crantz genotypes under different artificial shade levels using a modified membership function. Frontiers in Plant Science 13: 978932. https://doi.org/10.3389/fpls.2022.978932
Xu N., Fok M., Li J., Yang X., Yan W. 2017. Optimization of cotton variety registration criteria aided with a genotype-by-trait biplot analysis. Scientific Reports 7: 17237. https://doi.org/10.1038/s41598-017-17631-4
Yan W. 2014. Genotype-by-trait data analysis and decision-making. Chapter 9. In: Yan W (ed.) Crop variety trials: data management and analysis, 1st ed. John Wiley & Sons, INC., New York. pp. 163-186.
Yan W., Kang M.S. 2002. GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, FL. 273 p.
Yan W., Rajcan I. 2002. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science 42(1): 11-20. https://doi.org/10.2135/cropsci2002.1100
Zanetti F., Alberghini B., Marjanović Jeromela A., Grahovac N., Rajković D., Kiprovski B., Monti A. 2021. Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agronomy for Sustainable Development 41: 1-8. https://doi.org/10.1007/s13593-020-00663-y
Zanetti F., Eynck C., Christou M., Krzyżaniak M., Righini D., Alexopoulou E., Stolarski M.J., Van Loo E.N., Puttick D., Monti A. 2017. Agronomic performance and seed quality attributes of camelina (Camelina sativa L. Crantz) in multi-environment trials across Europe and Canada. Industrial Crop and Products 107: 602-608. https://doi.org/10.1016/j.indcrop.2017.06.022 | ||
آمار تعداد مشاهده مقاله: 27 تعداد دریافت فایل اصل مقاله: 18 |