تعداد نشریات | 23 |
تعداد شمارهها | 392 |
تعداد مقالات | 3,084 |
تعداد مشاهده مقاله | 2,817,120 |
تعداد دریافت فایل اصل مقاله | 1,975,949 |
Assessment of the Economic Viability and Sustainability of Olive Production in the Sistan Region | ||
Agrotechniques in Industrial Crops | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 18 تیر 1404 اصل مقاله (549.07 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22126/atic.2025.11403.1176 | ||
نویسندگان | ||
Mojtaba Davarpanah1؛ Mashallah Salarpour* 1؛ Mahmoud Ahmadpour1؛ Mohammadreza Asgharipour2؛ Saman Ziaei1؛ Alireza Keikha1 | ||
1Department of Agricultural Economics, Faculty of Agriculture, University of Zabol, Zabol, Iran | ||
2Department of Agronomy, Faculty of Agriculture, University of Zabol, Zabol, Iran | ||
چکیده | ||
This study aimed to assess the economic status and sustainability of the olive production system in the Sistan region. Data were collected through face-to-face interviews and questionnaires from 64 gardeners, retailers, and wholesalers in the region between 2021 and 2022, and analyzed using empirical methods and spatial regression. The total support of olive production systems in the cities of Zabol, Zahak, Hamoun, Hirmand and Nimroz was 1.06×1016, 1.19×1016, 1.60×1016 and 7.72×1015 sej ha-1, respectively. The inefficiency in the olive product was more than the inefficiency in olive oil, which itself indicates the efficiency of the olive oil market. Therefore, it can be said that the processing of these products leads to the improvement of its marketing and increases the technical efficiency. The R2 values of olive and olive oil in the simple regression model were 0.99 and 0.63 respectively. In contrast, the R² values in the spatial regression model were 0.98 and 0.99, highlighting the superiority of the spatial regression model over the simple regression model. The results indicate a spatial relationship among olive oil producers. Due to the positive sign of marketing costs, it can be said that marketing cost has a positive effect on the marketing margin and with its increase, the marketing margin of these products will increase. The mechanization and industrialization of olive cultivation and exploitation can enhance the economic empowerment of the farmers, leading to increased profits from the sale of this product. Therefore, the level, appropriate selection and correct use of machine inputs in agriculture have a significant impact land productivity, labor productivity, agricultural profitability, sustainability, environmental outcomes and quality of life fir those involved in agricultural trade. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Environmental load؛ Marketing margin؛ Olive؛ Olive oil | ||
مراجع | ||
Amiri Z., Asgharipour M.R., Campbell D.E., Armin M. 2019. A sustainability analysis of two rapeseed farming ecosystems in Khorramabad, Iran, based on emergy and economic analyses. Journal of Cleaner Production 226: 1051-1066. https://doi.org/10.1016/j.jclepro.2019.04.091
Amiri Z., Asgharipour M.R., Campbell D.E., Azizi K., Kakolvand E., Moghadam E.H. 2021. Conservation agriculture, a selective model based on emergy analysis for sustainable production of shallot as a medicinal-industrial plant. Journal of Cleaner Production 292: 126000. https://doi.org/10.1016/j.jclepro.2021.126000
Anselin L. 2013. Spatial econometrics: methods and models (Vol. 4): Springer Science & Business Media. https://doi.org/10.1007/978-94-015-7799-1
Arenas-Castro S., Gonçalves J.F., Moreno M., Villar R. 2020. Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Science of the Total Environment 709: 136161. https://doi.org/10.1016/j.scitotenv.2019.136161
Asgharipour M.R., Shahgholi H., Campbell D.E., Khamari I., Ghadiri A. 2019. Comparison of the sustainability of bean production systems based on emergy and economic analyses. Environmental Monitoring and Assessment 191: 1-21. https://doi.org/10.1007/s10661-018-7123-3
Barros M.V., Salvador R., do Prado G.F., de Francisco A.C., Piekarski C.M. 2021. Circular economy as a driver to sustainable businesses. Cleaner Environmental Systems 2: 100006. https://doi.org/10.1016/j.cesys.2020.100006
Brown M.T., Ulgiati S. 2004. Energy quality, emergy, and transformity: HT Odum’s contributions to quantifying and understanding systems. Ecological Modelling 178(1-2): 201-213. https://doi.org/10.1016/j.ecolmodel.2004.03.002
Brown M.T., Ulgiati S. 2016. Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline. Ecological Modelling 339: 126-132. https://doi.org/10.1016/j.ecolmodel.2016.03.017
Brunsdon C., Fotheringham A.S., Charlton M.E. 1996. Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis 28(4): 281-298. https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
Bryceson K., Kandampully J. 2004. The balancing act: "E" issues in the Australian Agri-Industry sector. 25th Annual McMaster World Congress, Hamilton Convention Centre, Ontario, Canada, 14-16 January 2004. Ontario, Canada: McMaster University.
Cavalett O., Ortega E. 2009. Emergy, nutrients balance, and economic assessment of soybean production and industrialization in Brazil. Journal of Cleaner Production 17(8): 762-771. https://doi.org/10.1016/j.jclepro.2008.11.022
Charlton M., Fotheringham S. 2009. Geographically weighted regression. National Centre for Geocomputation, National University of Ireland Maynooth.
Cheng H., Chen C., Wu S., Mirza Z.A., Liu Z. 2017. Emergy evaluation of cropping, poultry rearing, and fish raising systems in the drawdown zone of Three Gorges Reservoir of China. Journal of Cleaner Production 144: 559-571. https://doi.org/10.1016/j.jclepro.2016.12.053
Connor D.J., Fereres E. 2010. The physiology of adaptation and yield expression in olive. Horticultural Reviews 31: 155-229. https://doi.org/10.1002/9780470650882.ch4
DeJonge K.C., Taghvaeian S., Trout T.J., Comas L.H. 2015. Comparison of canopy temperature-based water stress indices for maize. Agricultural Water Management 156: 51-62. https://doi.org/10.1016/j.agwat.2015.03.023
Dekamin M., Kheiralipour K., Afshar R.K. 2022. Energy, economic, and environmental assessment of coriander seed production using material flow cost accounting and life cycle assessment. Environmental Science and Pollution Research 29(55): 83469-83482. https://doi.org/10.1007/s11356-022-21585-0
Della Santa Navarrete S., Borini F.M., Avrichir I. 2020. Environmental upgrading and the United Nations sustainable development goals. Journal of Cleaner Production 264: 121563. https://doi.org/10.1016/j.jclepro.2020.121563
Dou H., Cheng G., Zhang J., Wang C. 2023. Sustainable development strategies in multi-scenario of rural production space system: A case from mountainous and hilly countryside in southwest China. Journal of Cleaner Production 424: 138901. https://doi.org/10.1016/j.jclepro.2023.138901
Fabbri A., Bartolini G., Lambardi M., Kailis S. 2004. Olive propagation manual: Landlinks Press. https://doi.org/10.1071/9780643091016
Fallahinejad S., Armin M., Asgharipour M.R. 2021. A survey on the ecological sustainability of introducing new crops in the cropping pattern using emergy approach. Current Research in Environmental Sustainability 3: 100083. https://doi.org/10.1016/j.crsust.2021.100083
FAOSTAT. 2018. Food and agriculture organization of the United Nations. Statistical database. https://www.fao.org/faostat
Fartout Enayat F., Ghanbari S.A., Asgharipour M.R., Seyedabadi E. 2023. Monitoring of ecological health of Yaghooti grape production systems in Sistan region using emergy analysis technique. Agricultural Science and Sustainable Production 33(1): 287-304.https://doi.org/10.22034/saps.2022.50707.2846
Fotheringham A.S., Charlton M., Brunsdon C. 1997. Two techniques for exploring non-stationarity in geographical data. Geographical Systems 4(1): 59-82.
García-Tejero I., Hernández A., Padilla-Díaz C., Díaz-Espejo A., Fernández J. 2017. Assessing plant water status in a hedgerow olive orchard from thermography at plant level. Agricultural Water Management 188: 50-60. https://doi.org/10.1016/j.agwat.2017.04.004
Ghaley B.B., Kehli N., Mentler A. 2018. Emergy synthesis of conventional fodder maize (Zea mays L.) production in Denmark. Ecological Indicators 87: 144-151. https://doi.org/10.1016/j.ecolind.2017.12.027
Giannetti B., Ogura Y., Bonilla S., Almeida C. 2011. Emergy assessment of a coffee farm in Brazilian Cerrado considering in a broad form the environmental services, negative externalities and fair price. Agricultural Systems 104(9): 679-688. https://doi.org/10.1016/j.agsy.2011.08.001
Houshyar F. 2011. Assessing the agricultural sustainability and effecting factor on sustainable potato production system in Ardabil plain. Master’s Thesis. School of agriculture. University of Tabriz, Tabriz, Iran. (In Farsi).
International Olive Council (IOC). 2018. www.internationaloliveoil.org
Issaoui M., Flamini G., Brahmi F., Dabbou S., Hassine K.B., Taamali A., Chehab H., Ellouz M., Zarrouk M., Hammami M. 2010. Effect of the growing area conditions on differentiation between Chemlali and Chétoui olive oils. Food Chemistry 119(1): 220-225. https://doi.org/10.1016/j.foodchem.2009.06.012
Jafari M., Asgharipour M.R., Ramroudi M., Galavi M., Hadarbadi G. 2018. Sustainability assessment of date and pistachio agricultural systems using energy, emergy and economic approaches. Journal of Cleaner Production 193: 642-651. https://doi.org/10.1016/j.jclepro.2018.05.089
Kohansal M.R., Rafiei H. 2019. An investigation of factors affecting the marketing margins using spatial regression: A case study of neyshabour plain in Iran. Agricultural Economics and Development 27(2): 133-154. (In Farsi). https://doi.org/10.30490/aead.2019.95471
Lee J., Wong D.W. 2001. Statistical analysis with ArcView GIS. New York: John Wiley and Sons.
Lefroy E., Rydberg T. 2003. Emergy evaluation of three cropping systems in southwestern Australia. Ecological Modelling 161(3): 195-211. https://doi.org/10.1016/S0304-3800(02)00341-1
Lokko Y., Heijde M., Schebesta K., Scholtès P., Van Montagu M., Giacca M. 2018. Biotechnology and the bioeconomy—Towards inclusive and sustainable industrial development. New Biotechnology 40(Part A): 5-10. https://doi.org/10.1016/j.nbt.2017.06.005
Lu H., Bai Y., Ren H., Campbell D.E. 2010. Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: implications for agricultural policy in China. Journal of Environmental Management 91(12): 2727-2735. https://doi.org/10.1016/j.jenvman.2010.07.025
Martin J.F., Diemont S.A., Powell E., Stanton M., Levy-Tacher S. 2006. Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management. Agriculture, Ecosystems & Environment 115(1-4): 128-140. https://doi.org/10.1016/j.agee.2005.12.016
Odum H.T. 1996. Environmental accounting: Emergy and environmental decision making. John Wiley & Sons, New York. 370 p.
Odum H.T. 2000. Emergy of global processes, Handbook of emergy evaluation. Center for Environmental Policy, Environmental Engineering Sciences, University of Florida, Gainesville, Florida.
Ortega E., Cavalett O., Bonifácio R., Watanabe M. 2005. Brazilian soybean production: Emergy analysis with an expanded scope. Bulletin of Science, Technology & Society 25(4): 323-334. https://doi.org/10.1177/0270467605278367
Pelliciardi V., Varvaro L., Pulselli F.M. 2014. Emergy evaluation of a traditional farming system. Case study: Leh District (Ladakh-Indian Trans-Himalaya). European Journal of Sustainable Development 3(4): 1-16. https://doi.org/10.14207/ejsd.2014.v3n4p1
Prashar A. 2019. Towards sustainable development in industrial small and Medium-sized Enterprises: An energy sustainability approach. Journal of Cleaner Production 235: 977-996. https://doi.org/10.1016/j.jclepro.2019.07.045
Pulker C.E., Trapp G.S., Scott J.A., Pollard C.M. 2018. Global supermarkets’ corporate social responsibility commitments to public health: A content analysis. Globalization and Health 14: 121. https://doi.org/10.1186/s12992-018-0440-z
Qaim M. 2017. Globalisation of agrifood systems and sustainable nutrition. Proceedings of the Nutrition Society 76(1): 12-21. https://doi.org/10.1017/S0029665116000598
Su Y., He S., Wang K., Shahtahmassebi A.R., Zhang L., Zhang J., Zhang M., Gan M. 2020. Quantifying the sustainability of three types of agricultural production in China: An emergy analysis with the integration of environmental pollution. Journal of Cleaner Production 252: 119650. https://doi.org/10.1016/j.jclepro.2019.119650
Su Y., Xia P., Yu R., Wang X., Wang C., Jiang J., Zhu C., He S., Zhi J., Li Y. 2023. Integrated emergy and economic evaluation of different planting systems in China: Implications for coordinating poverty alleviation and rural revitalization. International Journal of Agricultural Sustainability 21(1): 2247799. https://doi.org/10.1080/14735903.2023.2247799
Taxidis E.T., Menexes G.C., Mamolos A.P., Tsatsarelis C.A., Anagnostopoulos C.D., Kalburtji K.L. 2015. Comparing organic and conventional olive groves relative to energy use and greenhouse gas emissions associated with the cultivation of two varieties. Applied Energy 149: 117-24. https://doi.org/10.1016/j.apenergy.2015.03.128
Thomé K.M., Cappellesso G., Ramos E.L., de Lima Duarte S.C. 2021. Food supply chains and short food supply chains: Coexistence conceptual framework. Journal of Cleaner Production 278: 123207. https://doi.org/10.1016/j.jclepro.2020.123207
Ulgiati S., Brown M.T. 1998. Monitoring patterns of sustainability in natural and man-made ecosystems. Ecological Modelling 108(1-3): 23-36. https://doi.org/10.1016/S0304-3800(98)00016-7
Vafabakhsh J., Mohammadzadeh A. 2019. Energy flow and GHG emissions in major field and horticultural crop production systems (Case study: Sharif Abad plain). Journal of Agroecology 11(2): 365-382. (In Farsi). https://doi.org/10.22067/jag.v11i2.81742
Wang X., Chen Y., Sui P., Gao W., Qin F., Zhang J., Wu X. 2014. Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA. Agricultural Systems 128: 66-78. https://doi.org/10.1016/j.agsy.2014.03.005
Wang X., Tan K., Chen Y., Chen Y., Shen X., Zhang L., Dong C. 2018. Emergy-based analysis of grain production and trade in China during 2000-2015. Journal of Cleaner Production 193: 59-71. https://doi.org/10.1016/j.jclepro.2018.05.072
Yang Q., Liu G., Casazza M., Campbell E.T., Giannetti B.F., Brown M.T. 2018. Development of a new framework for non-monetary accounting on ecosystem services valuation. Ecosystem Services 34(Part A): 37-54. https://doi.org/10.1016/j.ecoser.2018.09.006
Zamzami P., Poursaeed A., Farajolah Hoseini S. 2022. A model to stabilization the livelihood of gardeners on the shores of Lake Urmia against late spring cold: Using a grounded theory approach. Iranian Journal of Agricultural Economics and Development Research 53(1): 55-74. (In Farsi). https://doi.org/10.22059/ijaedr.2021.327178.669062
Zhai X., Huang D., Tang S., Li S., Guo J., Yang Y., Liu H., Li J., Wang K. 2017. The emergy of metabolism in different ecosystems under the same environmental conditions in the agro-pastoral ecotone of northern China. Ecological Indicators 74: 198-204. https://doi.org/10.1016/j.ecolind.2016.11.028
Zhang G., Long W. 2010. A key review on emergy analysis and assessment of biomass resources for a sustainable future. Energy Policy 38(6): 2948-2955. https://doi.org/10.1016/j.enpol.2010.01.032
Zhang L., Song B., Chen B. 2012. Emergy-based analysis of four farming systems: Insight into agricultural diversification in rural China. Journal of Cleaner Production 28: 33-44. https://doi.org/10.1016/j.jclepro.2011.10.042 | ||
آمار تعداد مشاهده مقاله: 3 تعداد دریافت فایل اصل مقاله: 4 |