تعداد نشریات | 23 |
تعداد شمارهها | 397 |
تعداد مقالات | 3,136 |
تعداد مشاهده مقاله | 2,867,140 |
تعداد دریافت فایل اصل مقاله | 2,001,109 |
اثر تنش شوری بر برخی صفات مورفوفیزیولوژیک گیاه جو (Hordeum vulgare L.)در سیستم هواکشت | ||
بیوتکنولوژی و بیوشیمی غلات | ||
مقاله 3، دوره 4، شماره 1، فروردین 1404، صفحه 49-65 اصل مقاله (523.84 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22126/cbb.2025.12325.1111 | ||
نویسندگان | ||
زهرا موحدی* 1؛ احمد معینی2؛ مهدی قبولی1؛ سمانه خلیلی2 | ||
1گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران. | ||
2گروه ژنتیک و بهنژادی گیاهی، دانشکده کشاورزی ، دانشگاه تربیت مدرس، تهران ، ایران. | ||
چکیده | ||
مقدمه: جو (Hordeum vulgare L.) چهارمین غله مهم در سراسر جهان است. این گیاه یکی از مقاومترین گیاهان به تنش شوری در بین غلات محسوب میشود. تنش شوری یکی از مهمترین تنشهای غیرزیستی است که باعث کاهش شدید عملکرد و کیفیت محصول گیاهان زراعی میشود. بنابراین، شوری تهدیدی جدی برای کشاورزی محسوب میشود. هواکشت یک سیستم هیدروپونیک است که در آن ریشههای گیاه در هوا معلق میشوند و به طور متناوب با محلول غنی از مواد مغذی و با استفاده از یک تایمر و پمپ به صورت پاشش کود، آبیاری میشوند. این پژوهش با هدف بررسی اثر سطوح مختلف تنش شوری و نوع رقم بر برخی صفات فیزیولوژیک، مورفولوژیک و بیوشیمیایی گیاه جو در سیستم هواکشت در شرایط گلخانه انجام شد. مواد و روشها: ﺟﻬﺖ بررسی اﺛﺮ رقم بر برخی وﯾژگیﻫﺎی ﻣﻮرﻓﻮ-ﻓﯿﺰﯾﻮﻟﻮژﯾک گیاه جو در ﺷﺮاﯾﻂ ﺗﻨﺶ ﺷﻮری، آزﻣﺎﯾشی در سیستم هواکشت بصورت ﻓﺎکتوریل و در ﻗﺎﻟﺐ ﻃﺮح کاملا ﺗﺼﺎدفی ﺑﺎ شش ﺗکرار اﻧﺠﺎم ﺷﺪ. فاکتور اول، رقم در دو سطح (شامل ارقام سرارود و بهمن) و فاکتور دوم شوری در 4 سطح (شامل 0، 5، 10 و 15 دسیزیمنس بر متر) بودند. ابتدا بذرها را جوانهدار کرده و سپس گیاهچههای یکنواخت انتخاب و در گلدانهای کوچک قرار داده شدند. پس از چند روز، نشاها به سیستم هواکشت منتقل شدند. سیستم هواکشت در یک محفظه رشد (هر واحد با ابعاد ۱۰۰ × ۱۰۰ × ۱۲۰ سانتیمتر؛ عمق × عرض × طول) با کنترل برخی عوامل محیطی مانند دما و دوره نوری ایجاد شد. ریشههای جو نیز هر ۲۰ دقیقه به مدت ۲۰ ثانیه با محلول هوگلند اسپری شدند و محلول غذایی هفتگی تعویض گردید. یک هفته پس از استقرار گیاهان در سیستم هواکشت، اعمال تیمارهای شوری آغاز شد. یک ماه پس از اعمال تنش شوری صفات وزن تر و خشک ریشه و اندامهوایی، ارتفاع گیاه، طول و حجم ریشه، رنگیزههای فتوسنتزی، میزان پرولین، میزان قند محلول، پروتئین، آنزیمهای آنتی اکسیدان و نسبت پتاسیم به سدیم اندازهگیری شدند. یافتهها: نتایج تجزیه واریانس دادهها نشان داد که اثرات اصلی و اثر متقابل تنش شوری و رقم بر صفات وزن تر و خشک ریشه و اندامهوایی، ارتفاع گیاه، طول و حجم ریشه، رنگیزههای فتوسنتزی، میزان پرولین، میزان قند محلول، پروتئین، آنزیمهای آنتی اکسیدان و نسبت پتاسیم به سدیم معنیدار شد. با افزایش غلظت کلرید سدیم، میزان وزن تر و خشک ریشه و اندامهوایی، ارتفاع گیاه، طول و حجم ریشه، کلروفیل a و b، پروتئین و نسبت پتاسیم به سدیم در هر دو رقم مورد مطالعه کاهش یافت و میزان پرولین، قند محلول، آنزیمهای کاتالاز و گایاکول پراکسیداز افزایش یافت. از بین دو رقم مورد بررسی رقم سرارود نسبت به رقم بهمن نسبت به تنش شوری، متحملتر بود. نتیجهگیری: نتایج این پژوهش نشان داد که ﺗﻨﺶ ﺷﻮری ﺑﺮ ﺑﯿﺸﺘﺮ ﺻﻔﺎت ﻣﻮرد ﻣﻄﺎﻟﻌﻪ در هر دو رقم ﺗﺄﺛﯿﺮ منفی داﺷﺖ. براساس نتایج مطالعه حاضر میتوان نتیجه گرفت که رقم سرارود کمتر تحت تأثیر تنش شوری قرار گرفته است و تحمل بالاتری نسبت به رقم بهمن داشته است. این یافتهها همچنین نشان میدهد که استفاده از سیستم هواکشت میتواند به بهبود مطالعات ریشه کمک کند و ابزار مفیدی برای غربالگری اولیه ارقام بخصوص از نظر صفات ریشه باشد. | ||
کلیدواژهها | ||
پروتئینهای محلول؛ رنگیزههای فتوسنتزی؛ سیستم دفاع آنتیاکسیدانی؛ کشت بدون خاک | ||
مراجع | ||
Aebi, H. 1984. Catalase in vitro. Methods in enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3 Ali, M. N., Yeasmin, L., Gantait, S., Goswami, R., & Chakraborty, S. 2014. Screening of rice landraces for salinity tolerance at seedling stage through morphological and molecular markers. Physiology and Molecular Biology of Plants, 20, 411-423. https://doi.org/10.1007/s12298-014-0250-6 Anafjeh, E., Salehi Salmi, M., Daneshvar, M., & Meratan, A. 2017. Effect of salinity stress on growth, proline content and antioxidant enzymes activity in the halophyte Sesuvium portulacastrum L. Plant Process and Function; 6 (21), 267-278. DOR: 20.1001.1.23222727.1396.6.21.20.2. [In Persian] Arab, N. A., Jami Moeini, M., & Marvi, H. 2024. Effect of late season application of different nitrogen sources and foliar application of potassium on the grain yield and quality in barley (Hordeum vulgare L.). Crop Science Research in Arid Regions, 6(3), 35-52. https://doi: 10.22034/csrar.2024.367597.1283. [In Persian] Arifuddin, M., Musa, Y., Farid, M., Anshori, M. F., Nasaruddin, N., Nur, A., & Sakinah, A. I. 2021. Rice screening with hydroponic deep-flow technique under salinity stress. Sabrao Journal of Breeding and Genetics, 53(3). Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant physiology, 24(1), PP: 1-17. https://doi: 10.1104/pp.24.1.1 Ashrafi, S.h., Hosseini, R., Garoosi, G.h.A., Haddad, R., & Moradnejad, M. 2013. Investigation on changes in single stranded DNA preferring nuclease activity, protein and chlorophyll contents during salt stress in two sensitive and tolerant barley cultivars (Hordeum vulgare L.). Cell and Tissue Journal, 4(2), 187-195. https://doi: 10.52547/JCT.4.2.187. [In Persian] Atlassi Pak, V., Bahmani, O., & Asadbegi, M. 2018. Evaluation of Na+ concentration and K+/Na+ ratio as a criterion for salinity tolerance in wheat and barley. Journal of Crop Production and Processing, 8 (3), 133-143. https:// 10.29252/jcpp.8.3.133. [In Persian] Bates, L. S., Waldren, R. A., & Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. http://dx.doi.org/10.1007/BF00018060 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), PP: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3 Chhipa, B. R., & Lal, P. 1995. Na+/K+ ratios as the basis of salt tolerance in wheat. Australian Journal of Agricultural Research, 46, 533-53. https://doi.org/10.1071/AR9950533 Cozzolino, D., Roumeliotis, S., & Eglinton, J. 2015. Relationships between fatty acid contents of barley grain, malt, and wort with malt quality measurements. Cereal Chemistry, 92, pp.93-97. https://doi.org/10.1094/CCHEM-04-14-0071-R Fahmideh, L., Mazarie, A., & Pahlavan, P. 2022. Madadi, S. Effect of salinity stress on some morphophysiological and biochemical traits of two barley cultivars. Plant Process and Function; 11 (50), 275-292. DOR: 20.1001.1.23222727.1401.11.50.17.2. [In Persian] FAOSTAT. 2023. Food and Agricultural Organization of the United Nations (FAO), FAOStatistical Database, from http://faostat.fao.org Gharibvan notorki, J., Piri, H., Haghighatjoo, P., Naserin, A., & Asadi loor, M. 2025. Determining the optimal irrigation amount and salinity in quinoa (Chenopodium quinoa) by surface-response method. Iranian Journal of Soil and Water Research, 55(11), 1981-1999. https://doi: 10.22059/ijswr.2024.377374.669722. [In Persian] Ghasemi, V., Ehtesham Nia, A., Rezaeinejad, A., & Mumivand, H. 2023. The effect of different levels of salinity stress and cultivar on biochemical and physiological characteristics and nutrient concentration of William Sweet (Dianthus barbatus). Journal of Plant Production Research, 30(1), 1-19. https://doi: 10.22069/jopp.2021.19072.2815. [In Persian] Hamzeh Abbasipour Bahrani, H., Habibollah Ghazvini, H., Amiri, B., Bazrafshan, F., & Nikkhah, H.R. 2021. The effect of salinity stress on some traits of different barley lines under greenhouse and hydroponic conditions. Agroecology Journal, 17(1), 15-27. https://10.22034/aej.2022.696777. [In Persian] Hamzeh-Kahnoji, Z., Ebrahimi, A., Sharifi-Sirchi, G. R., & Majidi-Hervan, E. 2021. Monitoring of morphological, biochemical and molecular responses of four contrasting barley genotypes under salinity stress. Journal of the Saudi Society of Agricultural Sciences, 21(3), 187-196. https://doi.org/10.1016/j.jssas.2021.08.001 Irigoyen, J., Einerich, D., & Sánchez‐Díaz, M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84(1), 55-60. http:// doi:org/10.1034/j.1399-3054.1992.840109.x Pandit, K., Kaur Chandni, S., Kumar, M., Bhardwaj, R., & Kaur, S. 2024. Salinity stress: impact on plant growth, Advances in Food Security and Sustainability, 9, 145–160. https://doi.org/10.1016/bs.af2s.2024.07.002 Kang, H. M., & Saltiveit, M. E. 2002. Chilling tolerance of maize, cucumber and rice seedling (leaves and roots) and differentially affected by salicylic acid. Physiologia Plantarum, 115, 577-576. https://doi: 10.1034/j.1399-3054.2002.1150411.x. Kazemi ArPanahi, َA., Mahlooji, M., Marashi, S. K., Mojaddam, M., & Sakinezhad, T. 2024. Morphophysiological responses of barley genotypes to concentration of Zinc sulphate under drought and salinity conditions. Crop Science Research in Arid Regions, 6(3), 71-90. https://10.22034/csrar.2023.388117.1327. [In Persian] Kumar, V., Shiram, V., Jawali, N., & Shitole, M.G. 2007. Differential response of indica rice genotypes to NaCl stress in relation to physiological and biochemical parameters. Archives of Agronomy and Soil Science, 2, 581-592. https://doi.org/10.1080/03650340701576800 Maksimovic, J. D., Zhang, J., Zeng, F., Zivanovic, B. D., Shabala, L., Zhou, M., & Shabala, S. 2013. Linking oxidative and salinity stress tolerance in barley: Can root antioxidant enzyme activity be used as a measure of stress tolerance?. Plant and Soil, 365, 141-155. https://doi.org/10.1007/s11104-012-1366-5 Miri Kondori, M., Mohammadi, S.A., & Bandehhagh, A. 2014. Effect of salinity on root characteristics of Sahara 3771 (salt tolerant) and Clipper (salt sensitive) barley varieties. Cereal Research, 4(2), 175-184. DOR: 20.1001.1.22520163.1393.4.2.7.3. [In Persian] Mithunesh, P., Gupta, K., Ghule, S., & Hule, S. 2015. Aeroponic based controlled environment based farming system. IOSR Journal of Computer Engineering (IOSR-JCE), 17(6), 55-58. https://doi. 10.9790/0661-17625558 Mohamadi, S.F., Babaian Jolodar, N., Bagheri, N., Nematzadeh Qharakhili, G.A., & Hashemi Petroudi, S.H. 2024. Studying the effect of salinity stress on some morphological and physiological traits in rice genotypes at the seedling stage under hydroponic conditions. Plant Process and Function, 13 (59) :343-364. https://doi: 10.22034/13.59.343. [In Persian] Movahedi, Z., & Moieni, A. 2024. Effects of Farmax nano fertilizer and Amino Acid on morological traits and photosynthetic pigments of chicory in aeroponic system. Iranian Journal of Soil and Water Research, 55(6), 889-902. https://doi: 10.22059/ijswr.2024.371442.669651. [In Persian] Munns, R., & Tester, M. 2008. Mechanisms o f salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi: 10.1146/annurev.arplant.59.032607.092911 Nabati, J., Nasiri, Z. , Nezami, A. , Kafi, M. and Goldani, M. 2022. Effects of salinity stress on growth processes and survival of desi-type chickpea genotypes in hydroponic conditions. Iranian Journal of Field Crop Science, 53(2), 29-44. https://doi: 10.22059/ijfcs.2021.315235.654779. [In Persian] Noctor, G., Arisi, A.C.M., Jouanin, L., Kunert, K.J., Rennenberg, H., & Foyer, C.H. 1998. Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany, 49 (321), 623-647. https://doi: 10.1093/jexbot/49.321.623 Noreen, S., Sultan, M., Akhter, M. S., Shah, K. H., Ummara, U., Manzoor, H., & Ahmad, P. 2021. Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. Plant Physiology and Biochemistry, 158, 244-254. https://doi: 10.1016/j.plaphy.2020.11.007. Epub 2020 Nov 7. Pakar, N., Pirasteh-Anosheh, H., Emam, Y., & Pessarakli, M. 2016. Barley growth, yield, antioxidant enzymes, and ion accumulation affected by PGRs under salinity stress conditions. Journal of Plant Nutrition, 39, 1372-1379. https://doi: 10.1080/01904167.2016.1143498 Rostami, M., Javadi, A., & Hosseinzadeh, S. M. 2020. Induction of resistance to salinity stress in the produced seeds of wheat after foliar application of nano-zinc oxide and nano- iron oxide. Journal of Plant Research (Iranian Journal of Biology), 33(3), 593-606. DOR: 20.1001.1.23832592.1399.33.3.5.9. [In Persian] Saed-Moucheshi, A., & Safari, H. 2023. Investigation of regulatory elements related to superoxide dismutase enzyme genes in wheat. Cereal Biotechnology and Biochemistry, 2(1), 64-73. https://doi: 10.22126/cbb.2023.8692.1034. [In Persian] Salama, S., Terivedi, S., Busheva, M., Afra, A., Grab, G., & Erdei, L. 1994. Effects of NaCl salinity on growth, cation accumulation, chlorophyll structure and function in wheat cultivars differing into salt tolerance. Plant Physiology, 144, 241- 247. https://doi:10.1016/S0176-1617(11)80550-X Soofinia, S., & Pourmohammad, A. 2024. The effect of different levels of salinity stress on early-maturing genotypes grass pea (Lathyrus sativus L.) genotypes at various harvest times. Crop Science Research in Arid Regions, 6(3), 185-201. https://doi: 10.22034/csrar.2024.444548. [In Persian] Tadayonnejad, M., Dehqani, M., & Parsadoust, F. 2021. Effect of salinity stress and phosphorus application in different stages of wheat growth on biomass and some of its physiological characteristics. Plant Process and Function, 10 (44),119-132.DOR: 20.1001.1.23222727.1400.10.44.15.1. [In Persian] Updhyaya, A., Sankhla, D., Davis, T. D., Sankhla, N., & Smidth, B. N. 1985. Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. Plant Physiology, 121, 453-461. https://doi.org/10.1016/S0176-1617(85)80081-X Waisel, Y., & Eshel, A. 2002. Aeroponics: a tool for root research under minimal environmental restrictions. Plant roots: the hidden half. New York: Marcel Dekker, 323-331. | ||
آمار تعداد مشاهده مقاله: 1 تعداد دریافت فایل اصل مقاله: 2 |