تعداد نشریات | 23 |
تعداد شمارهها | 398 |
تعداد مقالات | 3,141 |
تعداد مشاهده مقاله | 2,872,124 |
تعداد دریافت فایل اصل مقاله | 2,003,088 |
مقاله مروری: مهندسی ژنتیک در غلات با تاکید بر کاربرد آگروباکتریوم | ||
بیوتکنولوژی و بیوشیمی غلات | ||
دوره 4، شماره 1، فروردین 1404، صفحه 132-164 اصل مقاله (830.65 K) | ||
نوع مقاله: مروری | ||
شناسه دیجیتال (DOI): 10.22126/cbb.2025.11721.1102 | ||
نویسندگان | ||
نوشین فلاحی1، 2؛ آرمین ساعدموچشی* 3؛ عباس زضایی زاد3؛ محمد گردکانه3 | ||
1شرکت توسعه ذرت ایران، آزمایشگاه بذر،کرمانشاه، ایران. | ||
2گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران. | ||
3مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه، ایران. | ||
چکیده | ||
بهبود در کیفیت و عملکرد محصولات گیاهی پیامدهای مفید و مهمی برای امنیت غذایی و کشاورزی پایدار دارد. اصلاح ژنتیکی گیاهان یک حوزه مهم در بخش تحقیقات کشاورزی، جهت تحقق این امر است. تاکنون از طریق روشهای بهنژادی مرسوم و مهندسی ژنتیک، گیاهانی با عملکرد بالاتر، کیفیت بهتر دانه و مقاوم در برابر آفات و بیماریها تولید شده است. فرایند انتقال ژن در مهندسی ژنتیک به مجموعهای از فرایندهای ژنتیکی اطلاق میگردد که طی آن قطعه معینی از DNA استخراج شده، که حامل ژن جدید یا ساختار جدیدی از ژنها است را با استفاده از فنون آزمایشگاهی بهطور مصنوعی وارد ژنوم یک موجود زنده میکنند. در این فرایند، دریافتکننده ژن جدید را گونهی تراریخته مینامند و از دو روش مستقیم یا روش غیرمستقیم برای انتقال ژن استفاده میشود. انتقال ژن توسط آگروباکتریوم یکی از روشهای موفق مورد استفاده در گیاهان زراعی و باغی است. انتقال ژن توسط این باکتری جزئی از کوچکترین مهندسیهای ژنتیک در طبیعت است. فن انتقال ژن با آگروباکتریوم ، از سازوکار طبیعی این باکتری برای انتقال ژن هدف استفاده میکند. بکارگیری این روش از سوی پژوهشگران علوم بهنژادی موجب ایجاد تغییرات ژنتیکی مفیدی درگیاهان شده است و گونههای مختلفی از گیاهان با این روش اصلاح و بهبود یافتهاند. این روش نسبت به سایر روشهای انتقال ژن برتریهای زیادی دارد که از جمله آن میتوان به پایداری گیاه تراریخته، نبود پیچیدگی و همچنین مقرونبه صرفه بودن آن اشاره کرد. از محدودیتهای این فناوری هم میتوان بازده پایین تراریختگی، کارآیی اندک در گیاهان تکلپه و وابستگی به ژنوتیپ و ریزنمونه را نام برد. جهت برطرف کردن این محدودیتها مهندسین ژنتیک در تلاشند که سازوکارهای پیچیده و مشکلات این روش را مرتفع کنند و راهحل مناسبی برای قرار دادن هدفمند DNA در مکانهای ژنومی مناسب در گیاهان ارائه دهند. بهدلیل اهمیت انتقال ژن با آگروباکتریوم و بهبود کارایی این روش، بررسی مکانیسم انتقال ژن با این باکتری ضروریست، چرا که درک فزاینده ما از زیستشناسی آگروباکتریوم میتواند به گسترش کاربرد انتقال ژن به واسطه آگروباکتریوم کمک کند. از سوی دیگر لازمه پیشرفت در این روش انتقال ژن، دستکاری و ایجاد تغییرات به همراه آزمون و خطا در مراحل این فرایند زیستی است. بر این اساس، مقاله مروری پیشرو اطلاعات جامعی را در مورد روشهای انتقال ژن، چگونگی تراریختگی گیاهان توسط آگروباکتریوم، انواع گیاهانی که با این روش اصلاح شدهاند و همچنین چالشها و مشکلات مرتبط با این روش ارائه میکند .این مقاله برای افرادی که بر روی ویرایش ژنوم گیاهان با استفاده از آآگروباکتریوم و روش CRISPR/Cas9کار میکنند مفید خواهد بود. | ||
کلیدواژهها | ||
آگروباکتریوم؛ انتقال ژن؛ مهندسی ژنتیک؛ گیاه تراریخته؛ پلاسمید Ti | ||
مراجع | ||
Aalami, O., Azadi, P., Hadizadeh, H., Wilde, H.D., Karimian, Z., Nemati, H., & Samiei, L.2023. Melatonin strongly enhances the Agrobacterium-mediated transformation of carnation in nitrogen-depleted media. BMC Plant Biology, 23(1), p.316. https://doi.org/10.1186/s12870-023-04325-5 Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S.W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. 2016. Liposome: Classification, preparation, & alications. Nanoscale Research Letter, 8, 102. http://www.nanoscalereslett.com/content/8/1/102 Ali, A., Bang, S.W., Chung, S. M & Staub, J.E. 2015. Plant Transformation via Pollen Tube-Mediated Gene Transfer. Plant Molecular & Biology Reports, 33, 742–747. https://doi.org/10.1080/01904167.2022.2096467 Allam, M.A., & Saker, M.M. 2017. Microprojectile Bombardment Transformation of Date Palm Using the Insecticidal Cholesterol Oxidase (ChoA) Gene. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Date Palm Biotechnology Protocols Volume I. Methods in Molecular Biology, vol 1637. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7156-5-23 Amro, J., Black, C., Jemouai, Z., Rooney, N., Daneault, C., Zeytuni, N., Ruiz, M., Bui, K.H., & Baron, C. 2023. Cryo-EM structure of the Agrobacterium tumefaciens T-pilus reveals the importance of positive charges in the lumen. Structure, 31(4), .375-384. https://doi.org/10.1186/s1 Anami, S., Njuguna, E., Coussens, G., Aesaert, S., & Lijsebettens, M.V. 20132020. Higher Plant Transformation: Principles & Molecular Tools. Internationa Journal of Developed Biology, 57, 483–494. 10.1080/01904167.2013.868483 Andrieu, A., Breitler, J.C., Siré, C., Meynard, D., Gantet, P. & Guiderdoni, E. 2012. An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves. Rice, 5, 1-12. Ansari, W.A., Chandanshive, S.U., Bhatt, V., Nadaf, A.B., Vats, S., Katara, J.L., Sonah, H. & Deshmukh, R. 2020. Genome editing in cereals: aroaches, alications & challenges. International Journal of Molecular Sciences, 21(11), 4040. https://doi.org/10.3390/ijms21114040 Arshad, M., & Asad, S. 2019. Embryogenic Calli Explants & Silicon Carbide Whisker-Mediated Transformation of Cotton (Gossypium hirsutum L.). Transgenic Cotton: Methods & Protocols, 75-91. Asad, S., Mukhtar, Z., Nazir, F., Hashmi, J.A., Mansoor, S., Zafar, Y., & Arshad, M. 2008. Silicon carbide whisker-mediated embryogenic callus transformation of cotton (Gossypium hirsutum L.) & regeneration of salt tolerant plants. Molecular Biotechnology, 40, 161-169. http://www.nanoscalereslett.com/content/8/1/102 Begemann, M.B., Gray, B.N., January, E., Gordon, G.C., He, Y., Liu, H., Wu, X., Brutnell, T.P., Mockler, T.C., & Oufattole, M. 2017. PreciseInsertion & Guided Editing of Higher Plant Genomes Using Cpf1 CRISPR Nucleases. Scientific Reports, 7, 11606. https://doi.org/10.1186/s12870-023-04325-5 Belide, S., Vanhercke, T., Petrie, J.R., & Singh, S.P. 2017. Robust Genetic Transformation of Sorghum (Sorghum bicolor L.) Using Differentiating Embryogenic Callus Induced from Immature Embryos. Plant Methods, 13, 109. https://doi.org/10.1080/01904167.2022.2096467 Bian, Z., Li, S., Yang, R., Yin, J., Zhang, Y., Tu, Q., Fu, J., & Li, R. 2022. Development of a new recombineering system for Agrobacterium species. Alied & Environmental Microbiology, 88(5), .e02499-21. http://www.nanoscalereslett.com/content/8/1/102 Bonawitz, N.D., Ainley, W.M., Itaya, A., Chennareddy, S.R., Cicak, T., Effinger, K., Jiang, K., Mall, T.K., Marri, P.R., & Samuel,J.P. 2019. Zinc Finger Nuclease-mediated Targeting of Multiple Transgenes to an Endogenous Soybean Genomic Locus viaNon-homologous End Joining. Plant Biotechnology Journal, 17, 750–761. https://doi.org/10.1080/01904167.2022.2096467 Borges, F., &Martienssen, R.A. 2015. The expanding world of small RNAs in plants. Nature Reviews Molecular Cell Biology, 16(12), 727-741. Brodersen, P. & Voinnet, O., 2006. The diversity of RNA silencing pathways in plants. Trends in Genetics, 22(5), 268-280. Buiatti, M., Marcheschi, G., Venturo, R., Bettini, P., Bogani, P., Morpurgo, R., Nacmias, B., &Pellegrini, M.G. 1987. In vitro response to Fusarium elicitor & toxic substances in crosses between resistant & susceptible carnation cultivars. Plant Breeding, 98(4), 346-348. Busov, V. B., Brunner, A. M., Meilan, R., Filichkin, S., Ganio, L., Gandhi, S., & Strauss, S. H. 2005. Genetic transformation: A powerful tool for dissection of adaptive traits in trees. New Phytologist, 167, 9–18. https://doi.org/10.1186/s12870-023-04325-5 Butardo, V.M., Fitzgerald, M.A., Bird, A.R., Gidley, M.J., Flanagan, B.M., Larroque, O., Resurreccion, A.P., Laidlaw, H.K., Jobling, S.A., Morell, M.K., &Rahman, S. 2011. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA-and hairpin RNA-mediated RNA silencing. Journal of Experimental Botany, 62(14), 4927-4941. Calabuig-Serna, A., Mir, R., Porcel, R., & Seguí-Simarro, J.M. 2023. The Highly Embryogenic Brassica napus DH4079 line is recalcitrant to Agrobacterium-mediated genetic transformation. Plants, 12(10), p.2008. https://doi.org/10.1080/01904167.2022.2096467 Carroll, D. 2011. Genome engineering with zinc-finger nucleases. Genetics, 188(4), 773-782. Čermák, T., Baltes, N.J., Čegan, R., Zhang, Y., &Voytas, D.F. 2015. High-frequency, precise modification of the tomato genome. Genome biology, 16, 1-15. Chilton, M.D.M., & Que, Q. 2003. Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant physiology, 133(3), 956-965. http://www.nanoscalereslett.com/content/8/1/102 Chumakov, M.I., Rozhok, N.A., Velikov, V.A., Tyrnov, V.S. & Volokhina, I.V. 2006. Agrobacterium-mediated in planta transformation of maize via pistil filaments. Russian Journal of Genetics, 42, 893-897. https://doi.org/10.1134/S1022795406080072 Crossway, A., Oakes, J.V., Irvine, J.M., Ward, B., Knauf, V.C., & Shewmaker, C.K.1986. Integration of Foreign DNA Following Microinjection of Tobacco Mesophyll Protoplasts. Molecular Gene & Genetics, 202, 179–185. https://doi.org/10.1186/s12870-023-04325-5 Das, D.K. 2018. Expression of a bacterial chitinase (ChiB) gene enhances resistance against Erysiphae polygoni induced powdery mildew disease in the transgenic black gram (Vigna mungo L.)(cv. T9). American Journal of Plant Sciences, 9(8), 1759-1770. https://doi.org/10.4236/ajps.2018.98128 Debernardi, J.M., Tricoli, D.M., Ercoli, M.F., Hayta, S., Ronald, P., Palatnik, J.F., & Dubcovsky, J. 2020. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology, 38(11), .1274-1279. https://doi.org/10.1080/01904167.2022.2096467 Desiderio, F., Zarei, L., Licciardello, S., Cheghamirza, K., Farshadfar, E., Virzi, N., Sciacca, F., Bagnaresi, P., Battaglia, R., Guerra, D., Palumbo, M., Cattivelli, L., & Mazzucotelli, E. 2019. Genomic regions from an iranian landrace increase kernel size in durum wheat. Frontier in Plant Science, 10, 448-468. http://www.nanoscalereslett.com/content/8/1/102 Du, C., Chai, L.A., Liu, C., Si, Y., & Fan, H. 2022. Improved Agrobacterium tumefaciens-mediated transformation using antibiotics & acetosyringone selection in cucumber. Plant Biotechnology Reports, 16(1), .17-27. 10.1080/01904167.2013.868483 Du, H., Shen, X., Huang, Y., Huang, M., & Zhang, Z. 2016. Overexpression of vitreoscilla hemoglobin increases waterlogging tolerance in arabidopsis & maize. BMC Plant Biology, 16, 35. https://doi.org/10.1186/s12870-021-02919-5 Duan, X., Hou, Q., Liu, G., Pang, X., Niu, Z., Wang, X., Zhang, Y., Li, B., & Liang, R. 2018. Expression of Pinellia pedatisecta lectin gene in transgenic wheat enhances resistance to wheat aphids. Molecules, 23(4), 748. http://www.nanoscalereslett.com/content/8/1/102 Elliott, C., Zhou, F., Spielmeyer, W., Panstruga, R., & Schulze-Lefert, P. 2002. Functional conservation of wheat & rice Mlo orthologs in defense modulation to the powdery mildew fungus. Molecular Plant-Microbe Interactions, 15(10), 1069-107 Fahim, M., Millar, A.A., Wood, C.C., &Larkin, P.J. 2012. Resistance to Wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnology Journal, 10(2), 150-163. https://doi.org/10.1111/j.1467-7652.2011.00647.x Fallahi, N., Tahmasebi, Z., & Zebarjadi, A. 2022. Effect of explant, type & concentration of hormone on callus induction & regeneration of two Iranian sesame (Sesamum indicum L.) cultivars. 10.1080/01904167.2013.868483 Fllahi, N., Zebarjadi, A., & Tahmasebi, Z. 2024. Optimization of effective factors in the transfer of FAD3 gene effective in omega-3 biosynthesis to two sesame cultivars. Modern Genetics Journal, 18(4), .377-388. https://doi.org/10.1080/01904167.2022.2096467 Gao, S., Yang, Y., Wang, C., Guo, J., Zhou, D., Wu, Q., Su, Y., Xu, L., & Que, Y. 2016. Transgenic Sugarcane with a Cry1Ac Gene Exhibited Better Phenotypic Traits & Enhanced Resistance against Sugarcane Borer. PLoS ONE, 11, e0153929. https://doi.org/10.1186/s12870-023-04325-5 Gasparis, S., Kała, M., Przyborowski, M., Orczyk, W. & Nadolska-Orczyk, A. 2017. Artificial microRNA-based specific gene silencing of grain hardness genes in polyploid cereals aeared to be not stable over transgenic plant generations. Frontiers in Plant Science, 7, 2017. Gasparis, S., Orczyk, W., &Nadolska-Orczyk, A. 2013. Sina & Sinb genes in triticale do not determine grain hardness contrary to their orthologs Pina & Pinb in wheat. BMC Plant Biology, 13, 1-12. https://doi.org/10.1186/1471-2229-13-190 Gasparis, S., Orczyk, W., Zalewski, W., & Nadolska-Orczyk, A. 2011. The RNA-mediated silencing of one of the Pin genes in allohexaploid wheat simultaneously decreases the expression of the other, & increases grain hardness. Journal of Experimental Botany, 62(11), 4025-4036. https://doi.org/10.1093/jxb/err103 Ge, X., Xu, J., Yang, Z., Yang, X., Wang, Y., Chen, Y., Wang, P., & Li, F. 2023. Efficient genotype‐independent cotton genetic transformation & genome editing. Journal of Integrative Plant Biology, 65(4), 907-917. https://doi.org/10.1186/s12870-021-02919-5 Gelvin, S.B. 2003. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiology & Molecular Biology Reviews, 67(1), 16-37. https://doi.org/10.1128/mmbr.67.1.16-37.2003 Gil‐Humanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C.V., Sánchez‐León, S., Baltes, N.J., Starker, C., Barro, F., Gao, C., &Voytas, D.F. 2017. High‐efficiency gene targeting in hexaploid wheat using DNA replicons & CRISPR/Cas9. The Plant Journal, 89(6), 1251-1262. https://doi.org/10.1111/tpj.13446 Gouka, R.J., Gerk, C., Hooykaas, P.J., Bundock, P., Musters, W., Verrips, C.T., & de Groot, M.J. 1999. Transformation of Aspergillus awamori by Agrobacterium tumefaciens–mediated homologous recombination. Nature Biotechnology, 17(6), .598-601. http://www.nanoscalereslett.com/content/8/1/102 Grazziotin, M.A., Cabral, G.B., Ibrahim, A.B., Machado, R.B., & Aragão, F.J. 2020. Expression of the Arcelin 1 gene from Phaseolus vulgaris L. in cowpea seeds (Vigna unguiculata L.) confers bruchid resistance. Annals of Alied Biology, 176(3), 268-274. 10.1080/01904167.2013.868483 Hassan, M. Akram, Z. Ali, S. Ali, G.M. Zafar, Y. Shah, Z.H., & Alghabari, F. 2016. Whisker-Mediated Transformation of Peanut with Chitinase Gene Enhances Resistance to Leaf Spot Disease. Crop Breeding & Alied Biotechnology, 16, 108–114. https://doi.org/10.1080/01904167.2022.2096467 Hayta, S., Smedley, M.A., Demir, S.U., Blundell, R., Hinchliffe, A., Atkinson, N., & Harwood, W.A. 2019. An efficient & reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods, 15, .1-15. https://doi.org/10.1186/s12870-023-04325-5 Hensel, G., Himmelbach, A., Chen, W., Douchkov, D. K., & Kumlehn, J. 2011. Transgene expression systems in the Triticeae cereals. Journal of Plant Physiology, 168(1), 30-44. Hensel, G., Marthe, C., & Kumlehn, J. 2017. Agrobacterium-mediated transformation of wheat using immature embryos. Wheat Biotechnology: Methods & Protocols, 129-139. http://www.nanoscalereslett.com/content/8/1/102 Himmelbach, A., Liu, L., Zierold, U., Altschmied, L., Maucher, H., Beier, F., Schützendübel, A. 2010. Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. The Plant Cell, 22(3), 937-952. Holm, P.B., Olsen, O., Schnorf, M., Brinch-Pedersen, H., & Knudsen, S. 2000. Transformation of barley by microinjection into isolated zygote protoplasts. Transgenic Research, 9, 21-32. https://doi.org/10.1080/01904167.2022.2096467 Horsch, R.B., Fry, J.E., Hoffmann, N.L., Wallroth, M., Eichholtz, D., Rogers, S.G., & Fraley, R.T. 1985. A simple & general method for transferring genes into plants. Science, 227(4691), .1229-1231. http://www.nanoscalereslett.com/content/8/1/102 Hu, Y., Lacroix, B.,& Citovsky, V. 2021. Modulation of plant DNA damage response gene expression during Agrobacterium infection. Biochemical & biophysical research communications, 554, .7-12. 10.1080/01904167.2013.868483 ISAAA. 2020 b. Brief 55–2019: Executive Summary. https://doi.org/10.1186/s12870-023-04325-5 Jinek, M., Jiang, F., Taylor, D.W., Sternberg, S.H., Kaya, E., Ma, E., Anders, C., Hauer, M., Zhou, K., Lin, S. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 343, 1247997. https://doi.org/10.1126/science.1247997 Kaeler, H.F. Gu, W. Somers, D.A., & Rines, H.W.1990. Cockburn, A.F. Silicon Carbide Fiber-Mediated DNA Delivery into Plant Cells. Plant Cell Report, 9, 415–418. https://doi.org/10.1186/s12870-021-02919-5 Karmakar, S., Molla, K.A., Gayen, D., Karmakar, A., Das, K., Sarkar, S.N., Datta, K., & Datta, S.K. 2019. Development of a Rapid & Highly Efficient Agrobacterium -Mediated Transformation System for Pigeon Pea [Cajanus cajan (L.) Millsp]. GM Crops Food, 10, 115–138. https://doi.org/10.1080/01904167.2022.2096467 Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J., & Schroeder, A. 2018. Therapeutic nanoparticles penetrate leaves & deliver nutrients to agricultural crops. Scientific Reports, 8(1), .1-10. 10.1080/01904167.2013.868483 Kaur, A., Reddy, M.S., & Kumar, A. 2022. Heat shock enhanced Agrobacterium tumefaciens mediated T-DNA delivery to potato (Solanum tuberosum L.). Journal of Plant Biochemistry & Biotechnology, 31(4), 853-863. http://www.nanoscalereslett.com/content/8/1/102 Kausch, A.P., Nelson-Vasilchik, K., Hague, J., Mookkan, M., Quemada, H., Dellaporta, S., Fragoso, C., & Zhang, Z.J. 2019. Edit atWill:Genotype Independent Plant Transformation in the Era of Advanced Genomics & Genome Editing. Plant Science, 281, 186–205. https://doi.org/10.1186/s12870-021-02919-5 Kawai, J., Kanazawa, M., Suzuki, R., Kikuchi, N., Hayakawa, Y., & Sekimoto, H. 2022. Highly efficient transformation of the model zygnematophycean alga Closterium peracerosum‐strigosum‐littorale complex by square‐pulse electroporation. New Phytologist, 233(1), .569-578. https://doi.org/10.1080/01904167.2022.2096467 Kis, A., Tholt, G., Ivanics, M., Várallyay, É., Jenes, B. & Havelda, Z. 2016. Polycistronic artificial miRNA‐mediated resistance to W heat dwarf virus in barley is highly efficient at low temperature. Molecular Plant Pathology, 17(3), .427-437. Kluepfel, D.A., McClean, A.E., Aradhya, M.K., & Moersfelder, J.W. 2014, April. Identification of Juglans wild relatives resistant to crown gall caused by Agrobacterium tumefaciens. In II International Symposium on Wild Relatives of Subtropical & Temperate Fruit & Nutrient Crops 1074 (. 87-94). https://doi.org/10.1186/s12870-023-04325-5 Koetle, M.J., Finnie, J.F., Balázs, E., & Van Staden, J. 2015. A review on factors affecting the Agrobacterium-mediated genetic transformation in ornamental monocotyledonous geophytes. South African Journal of Botany, 98, .37-44. http://www.nanoscalereslett.com/content/8/1/102 Koornneef, M. & Meinke, D. 2010. The development of Arabidopsis as a model plant. The Plant Journal, 61(6), .909-921. Kotnik, T., Rems, L., Tarek, M., & Miklavcic, D. 2019. Membrane Electroporation & Electropermeabilization: Mechanisms & Models. Annual Review in Biophysics, 48, 63–91. http://www.nanoscalereslett.com/content/8/1/102 Kumar, R., Mamrutha, H.M., Kaur, A., Venkatesh, K., Sharma, D., & Singh, G.P. 2019. Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature & immature embryos. Molecular biology reports, 46(2), 1845-1853. 10.1080/01904167.2013.868483 Li, M., Wang, D., Long, X., Hao, Z., Lu, Y., Zhou, Y., Peng, Y., Cheng, T., Shi, J., & Chen, J. 2022. Agrobacterium-mediated genetic transformation of embryogenic callus in a Liriodendron hybrid (L. Chinense × L. Tulipifera). Frontiers in Plant Science, 13, p.802128. https://doi.org/10.1080/01904167.2022.2096467 Li, X., Yang, Q., Peng, L., Tu, H., Lee, L.Y., Gelvin, S.B., & Pan, S.Q. 2020. Agrobacterium-delivered VirE2 interacts with host nucleoporin CG1 to facilitate the nuclear import of VirE2-coated T complex. Proceedings of the National Academy of Sciences, 117(42), .26389-26397. https://doi.org/10.1186/s12870-021-02919-5 Liu, H., Zhao, J., Chen, F., Wu, Z., Tan, J., Nguyen, N.H., Cheng, Z., & Weng, Y. 2023. Improving Agrobacterium tumefaciens− mediated genetic transformation for gene function studies & mutagenesis in cucumber (Cucumis sativus L.). Genes, 14(3), p.601. https://doi.org/10.1080/01904167.2021.1963773 Liu, K., Gao, Y., Li, Z.H., Liu, M., Wang, F.Q., & Wei, D.Z. 2022. CRISPR-Cas12a assisted precise genome editing of Mycolicibacterium neoaurum. New Biotechnology, 66, .61-69. 10.1080/01904167.2013.868483 Lorz, H., Paszkowski, J., Dierks-Ventling, C., & Potrykus, I. 1981. Isolation & Characterization of Cytoplasts & Miniprotoplasts Derived from Protoplasts of Cultured Cells. Physiology of Plant, 53, 385–391. https://doi.org/10.1186/s12870-023-04325-5 Lu, Y., Tian, Y., Shen, R., Yao, Q., Wang, M., Chen, M., Dong, J., Zhang, T., Li, F., Lei, M. & Zhu, J.K. 2020. Targeted, efficient sequence insertion & replacement in rice. Nature Biotechnology, 38(12), .1402-1407. Lv, Q., Chen, C., Xu, Y., Hu, S., Wang, L., Sun, K., Chen, X., & Li, X. 2017. Optimization of Agrobacterium tumefaciens-mediated transformation systems in tea plant (Camellia sinensis). Horticultural Plant Journal, 3(3), 105-109. https://doi.org/10.1080/01904167.2022.2096467 Lv, Z., Jiang, R., Chen, J., & Chen, W. 2020. Nanoparticle‐mediated gene transformation strategies for plant genetic engineering. The Plant Journal, 104(4), .880-891. https://doi.org/10.1080/01904167.2021.1963773 Masani, M.Y.A., Noll, G.A., Parveez, G.K.A., Sambanthamurthi, R., & Prüfer, D. 2014. Efficient transformation of oil palm protoplasts by PEG-mediated transfection & DNA microinjection. PloS One, 9(5), p.e96831. https://doi.org/10.1186/s12870-021-02919-5 Masters, A., Kang, M., McCaw, M., Zobrist, J.D., Gordon-Kamm, W., Jones, T, & Wang, K. 2020. Agrobacterium-mediated immature embryo transformation of recalcitrant maize inbred lines using morphogenic genes. Journal of Visualized Experiments. 10(156), 60-78. https://doi.org/10.1080/01904167.2022.2096467 Melchiorre, M., Robert, G., Trii, V., Racca, R., & Lascano, H. R. 2009. Superoxide dismutase & glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance & changes in cellular redox state. Plant Growth Regulation, 57(1), 57-68. Miroshnichenko, D., Ashin, D., Pushin, A., & Dolgov, S. 2018. Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species. BMC Biotechnology, 18, 1-13. 10.1080/01904167.2013.868483 Mizuno, K., Takahashi, W., Ohyama, T., Shimada, T., & Tanaka, O. 2004. Improvement of the Aluminum Borate Whisker-Mediated Method of DNA Delivery into Rice Callus. Plant Production Science, 7, 45–49. https://doi.org/10.1080/01904167.2022.2096467 Mohanta, D., Patnaik, S., Sood, S., &Das, N. 2019. Carbon nanotubes: Evaluation of toxicity at biointerfaces. Journal of Pharmaceutical Analysis, 9(5), 293-300. Moiseeva, Y.M., Velikov, V.A., Volokhina, I.V., Gusev, Y.S., Yakovleva, O.S. & Chumakov, M.I. 2014. Agrobacterium-mediated transformation of maize with antisense suression of the proline dehydrogenase gene by an in planta method. British Biotechnology Journal, 4, 116-125. http://www.sciencedomain.org/abstract.php?iid=364&id=11&aid=2706 Najera VA, Twyman RM, Christou P, Zhu C. 2019. Alications of multiplex genome editing in higher plants. Current Opinion on Biotechnology, 59, 93-102, https://doi.org/10.1016/j.copbio.2019.02.015 Naseri, G., Sohani, M.M., Pourmassalehgou, A. & Allahi, S. 2012. In planta transformation of rice (Oryza sativa) using thaumatin-like protein gene for enhancing resistance to sheath blight. African Journal of Biotechnology, 11(31), .7885-7893. National Academy of Sciences, 113, 1949–1954. 10.1080/01904167.2013.868483 Niazian, M., Noori, S.A.S., Galuszka, P., & Mortazavian, S.M.M. 2017. Tissue culture-based Agrobacterium-mediated & in Planta transformation methods. https://doi.org/10.1186/s12870-021-02919-5 Ning, W., Zhai, H., Yu, J., Liang, S., Yang, X., Xing, X., Huo, J., Pang, T., Yang, Y., & Bai, X. 2017. Overexpression of Glycine soja WRKY20 enhances drought tolerance & improves plant yields under drought stress in transgenic soybean. Molecular Breeding, 37, 1-10. https://doi.org/10.1080/01904167.2021.1963773 Ossowski, S., Schwab, R., &Weigel, D., 2008. Gene silencing in plants using artificial microRNAs & other small RNAs. The Plant Journal, 53(4), 674-690. Ossowski,S.,Schwab,R.,andWeigel,D.(2008).Genesilencinginplantsusing artificial micro RNA sand other smallRNAs. Plant Journal. 53, 674–690. doi: 10.1111/ j.1365-313X.2007.03328.x Petolino, J.F., Hopkins, N.L., Kosegi, B.D., & Skokut, M. 2000. Whisker-mediated transformation of embryogenic callus of maize. Plant Cell Reports, 19, 781-786. https://doi.org/10.1080/01904167.2022.2096467 Ramkumar, T.R., Lenka, S.K., Arya, S.S., & Bansal, K.C. 2020. A Short History & Perspectives on Plant Genetic Transformation. In Biolistic DNA Delivery in Plants; Rustgi, S., Luo, H., Eds.; Humana: New York, NY, USA, . 39–68. 10.1080/01904167.2013.868483 Razzaq, A., Hafiz, I.A., Mahmood, I. & Hussain, A. 2011. Development of in planta transformation protocol for wheat. African Journal of Biotechnology, 10(5), p.740. Reddy, S.S.S., Singh, B., Peter, A.J., & Rao, T.V. 2019. Genetic transformation of indica rice varieties involving Am-SOD gene for improved abiotic stress tolerance. Saudi Journal of Biological Sciences, 26(2), 294-300. https://doi.org/10.1080/01904167.2022.2096467 Rod-In, W., Sujipuli, K. & Ratanasut, K. 2014. The floral-dip method for rice (Oryza sativa) transformation. Rogers, K., &Chen, X., 2013. Biogenesis, turnover, & mode of action of plant microRNAs. The Plant Cell, 25(7), 2383-2399. Saed-Moucheshi A., & Mozafari A. A. 2022. Alternate gene expression profiling of monoterpenes in Hymenocrater longiflorus as a novel pharmaceutical plant under water deficit. Scientific Reports, 12(1): 4084. 10.1080/01904167.2013.868483 Saed-Moucheshi A., & Safari H. 2023a. Investigation of regulatory elements related to superoxide dismutase enzyme genes in wheat. Cereal Biotechnology & Biochemistry, 1(3) 23-38. 10.1080/01904167.2013.868483 Saed-Moucheshi A., & Safari H. 2023b. Superoxide dismutase enzyme expression in root & shoot of triticale seedlings under drought stress conditions. Cereal Biotechnology & Biochemistry, 1: 581-595. http://www.nanoscalereslett.com/content/8/1/102 Saed-Moucheshi A., Sohrabi F., Fasihfar E., Baniasadi F., Riasat M., Mozafari A. A. 2021. Superoxide dismutase (SOD) as a selection criterion for triticale grain yield under drought stress: a comprehensive study on genomics & expression profiling, bioinformatics, heritability, & phenotypic variability. BMC Plant Biology, 21: 1-19. 10.1080/01904167.2013.868483 Saeed, T., & Shahzad, A.2016. Basic principles behind genetic transformation in plants. in biotechnological strategies for the conservation of medicinal & ornamental climbers; Shahzad, A., Sharma, S., iddiqui, S., Eds.; Springer: Cham, Switzerland, . 327–350. https://doi.org/10.1080/01904167.2022.2096467 Schiml, S., Fauser, F., & Puchta, H. 2014. The CRISPR/C as system can be used as nuclease for in planta gene targeting & as paired nickases for directed mutagenesis in A rabidopsis resulting in heritable progeny. The Plant Journal, 80(6), .1139-1150. https://doi.org/10.1111/tpj.12704 Sedeek, K.E., Mahas, A., &Mahfouz, M. 2019. Plant genome engineering for targeted improvement of crop traits. Frontiers in Plant Science, 10, 114. https://doi.org/10.3389/fpls.2019.00114 Shi, J., Gao, H., Wang, H., Lafitte, H.R., Archibald, R.L., Yang, M., Hakimi, S.M., Mo, H. & Habben, J.E. 2017. ARGOS 8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 207-216. https://doi.org/10.1111/pbi.12603 Shimizu-Sato, S., Tsuda, K., Nosaka-Takahashi, M., Suzuki, T., Ono, S., Ta, K.N., Yoshida, Y., Nonomura, K.I., & Sato, Y. 2020. Agrobacterium-mediated genetic transformation of wild Oryza species using immature embryos. Rice, 13, 1-13. https://doi.org/10.1186/s12870-021-02919-5 Shreni Agrawal, E.R.. 2022. A review: Agrobacterium-mediated gene transformation to increase plant productivity. The Journal of Phytopharmacology, 11, p.111. 10.1080/01904167.2013.868483 Smith, R.H., 2013. Plant tissue culture: techniques & experiments. academic press. http://www.nanoscalereslett.com/content/8/1/102 Sohrabi F., & Saed-Moucheshi M. A. 2023. A review on biological roles of long non-coding RNAs (LncRNAs) in plants: A focus on cereal crops. Plant Biotechnology, 7, 56-71. https://doi.org/10.1080/01904167.2022.2096467 Sohrabi F.,& Saed-Moucheshi A. 2023. Investigation of NAD (P) H oxidase genes regulatory elements in wheat. Cereal Biotechnology & Biochemistry, 2, 98-117. 10.1080/01904167.2013.868483 Somssich, M., 2019. A short history of plant transformation. 2019(1), 1–28. https://peerj.com/preprints/27556/. Song, C., Lu, L., Guo, Y., Xu, H., & Li, R. 2019. Efficient Agrobacterium-mediated transformation of the commercial hybrid poplar Populus Alba× Populus glandulosa Uyeki. International Journal of Molecular Sciences, 20(10), p.2594. http://www.nanoscalereslett.com/content/8/1/102 Sorokin, A.P., Ke, X.Y., Chen, D.F., & Elliott, M.C. 2000. Production of fertile transgenic wheat plants via tissue electroporation. Plant Science, 156(2), .227-233. https://doi.org/10.1186/s12870-021-02919-5 Supartana, P., Shimizu, T., Nogawa, M., Shioiri, H., Nakajima, T., Haramoto, N., Nozue, M. & Kojima, M. 2006. Development of simple & efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. Journal of Bioscience & Bioengineering, 102(3), .162-170. Supartana, P., Shimizu, T., Shioiri, H., Nogawa, M., Nozue, M. & Kojima, M. 2005. Development of simple & efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens. Journal of Bioscience & Bioengineering, 100(4), .391-397. Sutradhar, M., & Mandal, N. 2023. Reasons & riddance of Agrobacterium tumefaciens overgrowth in plant transformation. Transgenic Research, 32(1), .33-52. https://doi.org/10.1080/01904167.2021.1963773 Teo, Y.L., 2022. Engineering of plasmid vectors for enhancing agrobacterium-mediated plant transformation (Doctoral Dissertation, UTAR). 10.1080/01904167.2013.868483 Thagun, C., Chuah, J.A. & Numata, K. 2019. Targeted gene delivery into various plastids mediated by clustered cell‐penetrating & chloroplast‐targeting peptides. Advanced Science, 6(23), 1902064. Travella, S., Klimm, T.E. & Keller, B. 2006. RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiology, 142(1), .6-20. van Wordragen, M., Shakya, R., Verkerk, R., Peytavis, R., van Kammen, A., & Zabel, P. 1997. Liposome-Mediated Transfer of YAC DNA to Tobacco Cells. Plant Molecular & Biology Report, 15, 170–178. https://doi.org/10.1080/01904167.2021.1963773 Veena, Jiang, H., Doerge, R.W., & Gelvin, S.B. 2003. Transfer of T‐DNA & Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation & suresses host defense gene expression. The Plant Journal, 35(2), .219-236. https://doi.org/10.1186/s12870-021-02919-5 Wang, M., Sun, R., Zhang, B., & Wang, Q. 2019. Pollen tube pathway-mediated cotton transformation. Transgenic Cotton: Methods & Protocols, .67-73. http://www.nanoscalereslett.com/content/8/1/102 Weeks, D.P.; Spalding, M.H.; Yang, B. 2016. Use of designer nucleases for targeted gene & genome editing in plants. Plant Biotechnology Journal, 14, 483–495. https://pubmed.ncbi.nlm.nih.gov/26261084/ Wen, S.S., Ge, X.L., Wang, R., Yang, H.F., Bai, Y.E., Guo, Y.H., Zhang, J., Lu, M.Z., Zhao, S.T., & Wang, L.Q. 2022. An efficient agrobacterium-mediated transformation method for hybrid poplar 84K (Populus alba× P. glandulosa) using calli as explants. International Journal of Molecular Sciences, 23(4), 2216. http//:www.10.1080/01904167.2013.868483 Woodward, A.W. & Bartel, B.18. Biology in bloom: a primer on the Arabidopsis thaliana model system. Genetics, 208(4), .1337-1349. Wright, D.A., Townsend, J.A., Winfrey Jr, R.J., Irwin, P.A., Rajagopal, J., Lonosky, P.M., Hall, B.D., Jondle, M.D. & Voytas, D.F. 2005. High‐frequency homologous recombination in plants mediated by zinc‐finger nucleases. The Plant Journal, 44(4), .693-705. Wu, H., Acanda, Y., Jia, H., Wang, N., & Zale, J. 2016. Biolistic transformation of Carrizo citrange (Citrus sinensis Osb.× Poncirus trifoliata L. Raf.). Plant Cell Reports, 35, .1955-1962. http://www.nanoscalereslett.com/content/8/1/102 Yang, A., Su, Q.,& An, L. 2009. Ovary-drip transformation: a simple method for directly generating vector-and marker-free transgenic maize (Zea mays L.) with a linear GFP cassette transformation. Planta, 229, .793-801. https://doi.org/10.1080/01904167.2022.2096467 Ye, X., Shrawat, A., Moeller, L., Rode, R., Rivlin, A., Kelm, D., Martinell, B.J., Williams, E.J., Paisley, A., Duncan, D.R., & Armstrong, C.L. 2023. Agrobacterium-mediated direct transformation of wheat mature embryos through organogenesis. Frontiers in Plant Science, 14, p.1202235. 10.1080/01904167.2013.868483 Zahedi M. B., Hooman R., & Saed-Moucheshi A. 2016. Evaluation of antioxidant enzymes, lipid peroxidation & proline content as selection criteria for grain yield under water deficit stress in barley. Journal of Alied Biological Sciences, 8: 71-78. http://www.nanoscalereslett.com/content/8/1/102 Zale, J.M., Agarwal, S., Loar, S. and Steber, C.M. 2009. Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Reports, 28, .903-913. http://www .DOI 10.1007/s00299-009-0696-0 | ||
آمار تعداد مشاهده مقاله: 9 تعداد دریافت فایل اصل مقاله: 5 |