تعداد نشریات | 23 |
تعداد شمارهها | 400 |
تعداد مقالات | 3,166 |
تعداد مشاهده مقاله | 2,936,774 |
تعداد دریافت فایل اصل مقاله | 2,036,868 |
Essential Oil Potential of Echinophora cinerea Boiss: An Alternative to Systemic Herbicides in Agroecosystems | ||
Agrotechniques in Industrial Crops | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 15 شهریور 1404 اصل مقاله (505.65 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22126/atic.2025.11753.1195 | ||
نویسندگان | ||
Ali Nasiri1؛ Sina Fallah* 1؛ Amir Sadeghpour2 | ||
1Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran | ||
2Department of Plant, Soil, and Agricultural Systems, School of Agricultural Sciences, Southern Illinois University, Carbondale, USA | ||
چکیده | ||
Weed management in agricultural ecosystems often relies on synthetic herbicides, which, despite their effectiveness, incur high costs and contribute to environmental pollution. The development and industrial production of plant-based herbicides could address these issues. In this context, the effects of varying concentrations of essential oil from Fedaleh (Echinophora cinerea Boiss) and glyphosate herbicides on Chenopodium album (L.) were examined through a factorial experiment conducted within a completely randomized design. Analysis of variance revealed that antioxidant enzyme activity, membrane lipid peroxidation, hydrogen peroxide and proline content, photosynthetic pigment concentrations, and seedling growth were influenced by the type and concentration of the inhibitor. A significant interaction between the type of inhibitor and its concentration was observed regarding the activities of catalase and superoxide dismutase enzymes, membrane lipid peroxidation, hydrogen peroxide and proline content. The accumulation of hydrogen peroxide and alterations in the levels of chlorophyll-b, carotenoids, as well as the enzymes catalase, superoxide dismutase, and ascorbate peroxidase, and to a certain extent, proline content in plants treated with the essential oil from the Fedaleh flower were comparable to those observed with glyphosate. These effects resulted in a similar reduction in the weight of the C. album seedlings treated with the essential oil from the Fedaleh flower, analogous to the glyphosate treatment. Additionally, the levels of chlorophyll-a and seedling length demonstrated an inverse linear relationship with the concentration of the essential oil from the Fedaleh flower. Taken together, the essential oil from the Fedaleh flower shows significant potential as an inducer of oxidative stress and disruptor of the plant defense system, effectively suppressing the growth of the C. album. Hence, its comparable efficacy to glyphosate suggests promising prospects for its industrial production as a plant-based herbicide. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Essential oils؛ Glyphosate؛ Growth inhibitor؛ Herbicide | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Ahuja N., Batish D.R., Singh H.P., Kohli R.K. 2015. Herbicidal activity of eugenol towards some grassy and broad-leaved weeds. Journal of Pest Science 88(1): 209-218. https://doi.org/10.1007/s10340-014-0570-x
Aungtikun J., Soonwera M., Sittichok S. 2021. Insecticidal synergy of essential oils from Cymbopogon citratus (Stapf.), Myristica fragrans (Houtt.), and Illicium verum Hook. f. and their major active constituents. Industrial Crops and Products 164: 113386. https://doi.org/10.1016/j.indcrop.2021.113386
Avila L., Mallory-Smith C., Chauhan B.S., Kudsk P. 2023. Seventy-five years of synthetic herbicide use in agriculture: Will there be 100? Advances in Weed Science 41: e020230018. https://doi.org/10.51694/AdvWeedSci/2023;41:seventy-five001
Bajwa A.A., Zulfiqar U., Sadia S., Bhowmik P., Chauhan B.S. 2019. A global perspective on the biology, impact and management of Chenopodium album and Chenopodium murale: two troublesome agricultural and environmental weeds. Environmental Science and Pollution Research 26(6): 5357-5371. https://doi.org/10.1007/s11356-018-04104-y
Bates L.S., Waldren R.P., Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39(1): 205-207. https://doi.org/10.1007/BF00018060
Berners-Lee M., Kennelly C., Watson R., Hewitt C.N. 2018. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa: Science of the Anthropocene 6: 52. https://doi.org/10.1525/elementa.310
Boominathan R., Doran P.M. 2002. Ni‐induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytologist 156(2): 205-215. https://doi.org/10.1046/j.1469-8137.2002.00506.x
Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
British Pharmacopoeia. 1988. British Pharmacopoeia, Publisher: London: HMSO, Vol. II (pp. 137-138).
Chance B., Maehly A.C. 1954. Assay of catalase and peroxidase. Methods of Biochemical Analysis 1: 357-424. https://doi.org/10.1002/9780470110171.ch14
Chowhan N., Singh H.P., Batish D.R., Kohli R.K. 2011. Phytotoxic effects of β-pinene on early growth and associated biochemical changes in rice. Acta Physiologiae Plantarum 33(6): 2369-2376. https://doi.org/10.1007/s11738-011-0777-x
Czarnocka W., Karpiński S. 2018. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radical Biology and Medicine 122: 4-20. https://doi.org/10.1016/j.freeradbiomed.2018.01.011
Dahiya S., Batish D.R., Singh H.P. 2020. Pogostemon benghalensis essential oil inhibited the weed growth via causing oxidative damage. Brazilian Journal of Botany 43(3): 447-457. https://doi.org/10.1007/s40415-020-00613-8
Dar M.I., Naikoo M.I., Rehman F., Naushin F., Khan F.A. 2016. Proline accumulation in plants: roles in stress tolerance and plant development. InOsmolytes and plants acclimation to changing environment: emerging omics technologies (pp. 155-166). New Delhi: Springer India. https://doi.org/10.1007/978-81-322-2616-1_9
Das P., Nutan K.K., Singla-Pareek S.L., Pareek A. 2015. Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Frontiers in Environmental Science 2: 70. https://doi.org/10.3389/fenvs.2014.00070
De Martino L.D., Mancini E., de Almeida L.F., Feo V.D. 2010. The antigerminative activity of twenty-seven monoterpenes. Molecules 15(9): 6630-6637. https://doi.org/10.3390/molecules15096630
De Mastro G., El Mahdi J., Ruta C. 2021. Bioherbicidal potential of the essential oils from Mediterranean Lamiaceae for weed control in organic farming. Plants 10(4): 818. https://doi.org/10.3390/plants10040818
De Oliveira L.F., Damasceno C.S., Campos R., De Souza Â.M., De Almeida Ferreira Mendes G.J., De Fátima Gaspari Dias J., Miguel O.G., Miguel M.D. 2021. Chemical composition of the volatile oil of Croton glandulosus Linnaeus and its allelopathic activity. Natural Product Research 35(22): 4803-4806. https://doi.org/10.1080/14786419.2020.1727468
Dumanović J., Nepovimova E., Natić M., Kuča K., Jaćević V. 2021. The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Frontiers in Plant Science 11: 552969. https://doi.org/10.3389/fpls.2020.552969
Elisante F., Tarimo M.T., Ndakidemi P.A. 2013. Allelopathic effect of seed and leaf aqueous extracts of Datura stramonium on leaf chlorophyll content, shoot and root elongation of Cenchrus ciliaris and Neonotonia wightii. American Journal of Plant Sciences 4(12): 2332-2339. https://doi.org/10.4236/ajps.2013.412289
Fagodia S.K., Singh H.P., Batish D.R., Kohli R.K. 2017. Phytotoxicity and cytotoxicity of Citrus aurantiifolia essential oil and its major constituents: Limonene and citral. Industrial Crops and Products 108: 708-715. https://doi.org/10.1016/j.indcrop.2017.07.005
Fried G., Chauvel B., Munoz F., Reboud X. 2019. Which traits make weeds more successful in maize crops? Insights from a three-decade monitoring in France. Plants 9(1): 40. https://doi.org/10.3390/plants9010040
Ghasemi Pirbalouti A., Gholipour Z. 2016. Chemical composition, antimicrobial and antioxidant activities of essential oil from Echinophora cinerea harvested at two phenological stages. Journal of Essential Oil Research 28(6): 501-511. https://doi.org/10.1080/10412905.2016.1155506
Han C., Shao H., Zhou S., Mei Y., Cheng Z., Huang L., Lv G. 2021. Chemical composition and phytotoxicity of essential oil from invasive plant, Ambrosia artemisiifolia L. Ecotoxicology and Environmental Safety 211: 111879. https://doi.org/10.1016/j.ecoenv.2020.111879
Hazrati H., Saharkhiz M.J., Moein M., Khoshghalb H. 2018. Phytotoxic effects of several essential oils on two weed species and tomato. Biocatalysis and Agricultural Biotechnology 13: 204-212. https://doi.org/10.1016/j.bcab.2017.12.014
Heap I. 2023. The international survey of herbicide resistant weeds. Weed Science Society of America. http://www.weedscience.org
Hernandez-Tenorio F., Miranda A.M., Rodríguez C.A., Giraldo-Estrada C., Sáez A.A. 2022. Potential strategies in the biopesticide formulations: a bibliometric analysis. Agronomy 12(11): 2665. https://doi.org/10.3390/agronomy12112665
Horvath D.P., Clay S.A., Swanton C.J., Anderson J.V., Chao W.S. 2023. Weed-induced crop yield loss: a new paradigm and new challenges. Trends in Plant Science 28(5): 567-582. https://doi.org/10.1016/j.tplants.2022.12.014
Hoshino Y. 2024. Terpenoids and membrane dynamics evolution. Frontiers in Ecology and Evolution 12: 1345733. https://doi.org/10.3389/fevo.2024.1345733
Hulme P.E. 2023. Weed resistance to different herbicide modes of action is driven by agricultural intensification. Field Crops Research 292: 108819. https://doi.org/10.1016/j.fcr.2023.108819
Jabran K., Farooq M. 2012. Implications of potential allelopathic crops in agricultural systems. InAllelopathy: Current trends and future applications (pp. 349-385). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30595-5_15
Jabran K., Mahajan G., Sardana V., Chauhan B.S. 2015. Allelopathy for weed control in agricultural systems. Crop Protection 72: 57-65. https://doi.org/10.1016/j.cropro.2015.03.004
Jahantab E., Morshedloo M.R., Karimian V., Sharafatmandrad M. 2022. Essential oil variability in Echinophora cinerea Boiss. wild populations: a narrow-endemic and vulnerable species in Iran. Journal of Essential Oil Research 34(5): 375-382. https://doi.org/10.1080/10412905.2022.2101558
Jurkonienė S., Mockevičiūtė R., Gavelienė V., Šveikauskas V., Zareyan M., Jankovska-Bortkevič E., Jankauskienė J., Žalnierius T., Kozeko L. 2023. Proline enhances resistance and recovery of oilseed rape after a simulated prolonged drought. Plants 12(14): 2718. https://doi.org/10.3390/plants12142718
Kaur S., Singh H.P., Mittal S., Batish D.R., Kohli R.K. 2010. Phytotoxic effects of volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide. Industrial Crops and Products 32(1): 54-61. https://doi.org/10.1016/j.indcrop.2010.03.007
Kong Q., Zhou L., Wang X., Luo S., Li J., Xiao H., Zhang X., Xiang T., Feng S., Chen T., Yuan M. 2021. Chemical composition and allelopathic effect of essential oil of Litsea pungens. Agronomy 11(6): 1115. https://doi.org/10.3390/agronomy11061115
Lichtenthaler H.K., Wellburn A.R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11(5): 591-592. https://doi.org/10.1042/bst0110591
Loreto F., Velikova V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology 127(4): 1781-1787. https://doi.org/10.1104/pp.010497
Madadi E., Fallah S., Sadeghpour A., Barani-Beiranvand H. 2022. Exploring the use of chamomile (Matricaria chamomilla L.) bioactive compounds to control flixweed (Descurainia sophia L.) in bread wheat (Triticum aestivum L.): Implication for reducing chemical herbicide pollution. Saudi Journal of Biological Sciences 29(11): 103421. https://doi.org/10.1016/j.sjbs.2022.103421
Madadi E., Fallah S., Sadeghpour A., Barani-Beiranvand H. 2023. Black cumin bioactive compounds as eco-friendly novel green herbicides in wheat cropping: application to reduce chemical herbicides pollution. International Journal of Environmental Science and Technology 20(7): 7325-7342. https://doi.org/10.1007/s13762-023-04980-z
Mahdavikia F., Saharkhiz M.J., Karami A. 2017. Defensive response of radish seedlings to the oxidative stress arising from phenolic compounds in the extract of peppermint (Mentha × piperita L.). Scientia Horticulturae 214: 133-140. https://doi.org/10.1016/j.scienta.2016.11.029
Marwa K., Ismail A., Souihi M., Yassine M., Dhaouadi F., Mohsen H., Lamia H. 2023. Chemical composition and herbicidal potential of essential oil of Eucalyptus maculata Hook. Scientific African 21: e01751. https://doi.org/10.1016/j.sciaf.2023.e01751
Mozaffarian V. 2012. Identification of medicinal and aromatic plants of Iran. Farahang Moaser Publishers. Tehran, Iran. 1444 p. (In Farsi).
Mutlu S., Atici Ö., Esim N., Mete E. 2011. Essential oils of catmint (Nepeta meyeri Benth.) induce oxidative stress in early seedlings of various weed species. Acta Physiologiae Plantarum 33(3): 943-951. https://doi.org/10.1007/s11738-010-0626-3
Nasiri A., Fallah S., Sadeghpour A., Barani-Beiranvand H. 2024a. Assessing the potential of fedaleh (Echinophora cinerea) essential oils as a natural herbicide for spring-summer crops. Heliyon 10(16): e36085. https://doi.org/10.1016/j.heliyon.2024.e36085
Nasiri A., Fallah S., Sadeghpour A., Barani-Beiranvand H. 2024b. Essential oil profile in different parts of Echinophora cinerea (Boiss.). Agrotechniques in Industrial Crops 4(2): 98-105. https://doi.org/10.22126/atic.2023.9492.1108
Ozden M., Demirel U., Kahraman A. 2009. Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae 119(2): 163-168. https://doi.org/10.1016/j.scienta.2008.07.031
Pouresmaeil M., Nojadeh M.S., Movafeghi A., Maggi F. 2020. Exploring the bio-control efficacy of Artemisia fragrans essential oil on the perennial weed Convolvulus arvensis: Inhibitory effects on the photosynthetic machinery and induction of oxidative stress. Industrial Crops and Products 155: 112785. https://doi.org/10.1016/j.indcrop.2020.112785
Pouresmaeil M., Sabzi Nojadeh M., Movafeghi A., Aghbash B.N., Kosari-Nasab M., Zengin G., Maggi F. 2022. Phytotoxic activity of Moldavian dragonhead (Dracocephalum moldavica L.) essential oil and its possible use as bio-herbicide. Process Biochemistry 114: 86-92. https://doi.org/10.1016/j.procbio.2022.01.018
Sabzi Nojadeh M., Pouresmaeil M., Younessi-Hamzekhanlu M., Venditti A. 2021. Phytochemical profile of fennel essential oils and possible applications for natural antioxidant and controlling Convolvulus arvensis L. Natural Product Research 35(21): 4164-4168. https://doi.org/10.1080/14786419.2020.1741580
Scandalios J.G. 1997. Molecular genetics of superoxide dismutases in plants. Oxidative Stress and the Molecular Biology of Antioxidative Defenses 1997: 527-568.
Sharma A., Singh H.P., Batish D.R., Kohli R.K. 2019. Chemical profiling, cytotoxicity and phytotoxicity of foliar volatiles of Hyptis suaveolens. Ecotoxicology and Environmental Safety 171: 863-870. https://doi.org/10.1016/j.ecoenv.2018.12.091
Sharma P., Jha A.B., Dubey R.S., Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012(1): 217037. https://doi.org/10.1155/2012/217037
Tripathy B.C., Oelmüller R. 2012. Reactive oxygen species generation and signaling in plants. Plant Signaling & Behavior 7(12): 1621-1633. https://doi.org/10.4161/psb.22455
Uyun Q., Respatie D.W., Indradewa D. 2024. Unveiling the allelopathic potential of Wedelia leaf extract as a bioherbicide against purple nutsedge: a promising strategy for sustainable weed management. Sustainability 16(2): 479. https://doi.org/10.3390/su16020479
Verdeguer M., Sánchez-Moreiras A.M., Araniti F.P. 2020. hytotoxic effects and mechanism of action of essential oils and terpenoids. Plants 9(11): 1571. https://doi.org/10.3390/plants9111571
Verma R.S., Joshi N., Padalia R.C., Goswami P., Singh V.R., Chauhan A., Verma S.K., Iqbal H., Verma R.K., Chanda D., Sundaresan V. 2017. Chemical composition and allelopathic, antibacterial, antifungal and in vitro acetylcholinesterase inhibitory activities of yarrow (Achillea millefolium L.) native to India. Industrial Crops and Products 104: 144-155. https://doi.org/10.1016/j.indcrop.2017.04.046
Winterbourn C.C., Hawkins R.E., Brian M., Carrell R.W. 1975. The estimation of red cell superoxide dismutase activity. The Journal of Laboratory and Clinical Medicine 85(2): 337-341.
Xie Y., Tian L., Han X., Yang Y. 2021. Research advances in allelopathy of volatile organic compounds (VOCs) of plants. Horticulturae 7(9): 278. https://doi.org/10.3390/horticulturae7090278
Zhou S., Han C., Zhang C., Kuchkarova N., Wei C., Zhang C., Shao H. 2021. Allelopathic, phytotoxic, and insecticidal effects of Thymus proximus Serg. essential oil and its major constituents. Frontiers in Plant Science 12: 689875. https://doi.org/10.3389/fpls.2021.689875 | ||
آمار تعداد مشاهده مقاله: 8 تعداد دریافت فایل اصل مقاله: 7 |