| تعداد نشریات | 20 |
| تعداد شمارهها | 411 |
| تعداد مقالات | 3,300 |
| تعداد مشاهده مقاله | 3,283,526 |
| تعداد دریافت فایل اصل مقاله | 2,203,868 |
Effects of Various Plant Extracts on the Seedling Development of Cichorium intybus and Alopecurus myosuroides | ||
| Agrotechniques in Industrial Crops | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 07 مهر 1404 اصل مقاله (807.57 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22126/atic.2026.11555.1184 | ||
| نویسندگان | ||
| Bita Abbasi1؛ Alireza Bagheri* 1؛ Mahshid Rahimifard2؛ Gholamreza Mohammadi1 | ||
| 1Department of Plant Production and Genetics, Razi University, Kermanshah, Iran | ||
| 2Medicinal Plants and by Products Department, Research Institute of Forests and Rangelands, Tehran, Iran | ||
| چکیده | ||
| The study aimed to assess the impact of extracts from plant species on the early growth of Cichorium intybus and Alopecurus myosuroides weeds in laboratory and greenhouse. In the laboratory, the tested extracts included Papaver fruits, Harmel seeds, Fenugreek seeds, Artichoke leaves, Peanut shoots, Camelina shoots, Juglans fruit skins, and Pomegranate fruit skins at concentrations of 6.25, 12.5, 25, 50, 75, and 100 g.l-1. Distilled water and trifluralin were assigned as the controls, respectively. The most potent inhibitory extracts, Artichoke, Peanut, Pomegranate, and Papaver, at concentrations of 25, 50, 75, and 100 g.l-1 in addition to distilled water and glyphosate were applied to C. intybus and A. myosuroides under greenhouse conditions. All the extracts resulted in reduced seed early growth and photosynthetic parameters for both weed species. The phytotoxicity effect of the extracts intensified with 100 and 75 g.l-1, showing the most significant inhibitory effects. The hydroalcoholic extracts of Papaver fruit and Artichoke leaf, which had the highest total phenolic and alkaloid content, demonstrated the most significant herbicidal activity. Plant extracts containing allelochemical properties hold promise for the development of eco-friendly herbicides as substitutes for conventional chemical herbicides. | ||
تازه های تحقیق | ||
| ||
| کلیدواژهها | ||
| Allelochemical؛ Germinated seeds؛ Hydroethanolic extract؛ Natural herbicide؛ Weed | ||
| مراجع | ||
|
Abdel-Farid I.B., Massoud M.S., Al-Enazy Y., Abdel Latef A.A.H., Jahangir M., Gomaa N.H. 2021. Allelopathic potential of haloxylon persicum against wheat and black mustard with special reference to its phytochemical composition and antioxidant activity. Agronomy 11(2): 244. https://doi.org/10.3390/agronomy11020244
Alsharekh A., El-Sheikh M.A., Alatar A.A., Abdel-Salam E.M. 2022. Natural control of weed invasions in hyper-arid arable farms: Allelopathic potential effect of Conocarpus erectus against common weeds and vegetables. Agronomy 12(3): 703. https://doi.org/10.3390/agronomy12030703
Alwarnaidu Vijayarajan V.B., Forristal P.D., Cook S.K., Schilder D., Staples J., Hennessy M., Barth S. 2021. First detection and characterization of cross-and multiple resistance to acetyl-CoA carboxylase (ACCase)-and acetolactate synthase (ALS)-inhibiting herbicides in black-grass (Alopecurus myosuroides) and Italian ryegrass (Lolium multiflorum) populations from Ireland. Agriculture 11(12): 1272. https://doi.org/10.3390/agriculture11121272
Bashar H.K., Juraimi A.S., Ahmad-Hamdani M.S., Uddin M.K., Asib N., Anwar M.P., Rahaman F., Karim S.R., Haque M.A., Berahim Z., Nik Mustapha N.A., Hossain A. 2022. Determination and quantification of phytochemicals from the leaf extract of Parthenium hysterophorus L. and their physio-biochemical responses to several crop and weed species. Plants 11(23): 3209. https://doi.org/10.3390/plants11233209
Birsa M.L., Sarbu L.G. 2023. Health benefits of key constituents in C. intybus intybus L. Nutrients 15(6): 1322. https://doi.org/10.3390/nu15061322
El-Mergawi R.A., Al-Humaid A.I. 2019. Searching for natural herbicides in methanol extracts of eight plant species. Bulletin of the National Research Centre 43(1): 22. https://doi.org/10.1186/s42269-019-0063-4
Erida G., Saidi N., Hasanuddin, Syafruddin. 2019. Allelopathic screening of several weed species as potential bioherbicides. IOP Conference Series: Earth and Environmental Science 334(1): 12034. https://doi.org/10.1088/1755-1315/334/1/012034
Falleh H., Msilini N., Oueslati S., Ksouri R., Magne C., Lachaâl M., Karray-Bouraoui N. 2013. Diplotaxis harra and diplotaxis simplex organs: Assessment of phenolics and biological activities before and after fractionation. Industrial Crops and Products 45: 141-147. https://doi.org/10.1016/j.indcrop.2012.12.017
Gurmani A.R., Khan S.U., Mehmood T., Ahmed W., Rafique M. 2021. Exploring the allelopathic potential of plant extracts for weed suppression and productivity in wheat (Triticum aestivum L.). Gesunde Pflanzen 73(1): 29-37. https://doi.org/10.1007/s10343-020-00525-3
Hasan M., Ahmad-Hamdani M.S., Rosli A.M., Hamdan H. 2021. Bioherbicides: An eco-friendly tool for sustainable weed management. Plants 10(6): 1212. https://doi.org/10.3390/plants10061212
Hayyat M.S., Safdar M.E., Asif M., Tanveer A., Ali L., Qamar R., Ali H.H., Farooq N., Javeed H.M.A., Tarar Z.H. 2020. Allelopathic effect of waste-land weeds on germination and growth of winter crops. Planta Daninha 38: e020173626. https://doi.org/10.1590/S0100-83582020380100076
Holloway T., Pérez M., Chandler J.O., Venceslai N., Garcia L., Cohn J., Schilling K., Seville A., Leubner‐Metzger G., Nakabayashi K. 2024. Mechanisms of seed persistence in blackgrass (Alopecurus myosuroides Huds.). Weed Research 64: 237-250. https://doi.org/10.1111/wre.12630
Hossen K., Das K.R., Okada S., Iwasaki A., Suenaga K., Kato-Noguchi H. 2020. Allelopathic potential and active substances from wedelia chinensis (Osbeck). Foods 9(11): 1591. https://doi.org/10.3390/foods9111591
Huihui Z., Xin L., Zisong X., Yue W., Zhiyuan T., Meijun A., Yuehui Z., Wenxu Z., Nan X., Guangyu S. 2020. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicology and Environmental Safety 195: 110469. https://doi.org/10.1016/j.ecoenv.2020.110469
Islam M.S., Zaman F., Iwasaki A., Suenaga K., Kato-Noguchi H. 2019. Phytotoxic potential of Chrysopogon aciculatus (Retz.) Trin. (Poaceae). Weed Biology and Management 19(2): 51-58. https://doi.org/10.1111/wbm.12175
Janusauskaite D. 2023. The allelopathic activity of aqueous extracts of Helianthus annuus L., grown in boreal conditions, on germination, development, and physiological indices of Pisum sativum L. Plants 12(9): 1920. https://doi.org/10.3390/plants12091920
Kaab S.B., Rebey I.B., Hanafi M., Hammi K.M., Smaoui A., Fauconnier M.L., De Clerck C., Jijakli M.H., Ksouri R. 2020. Screening of Tunisian plant extracts for herbicidal activity and formulation of a bioherbicide based on Cynara cardunculus. South African Journal of Botany 128: 67-76. https://doi.org/10.1016/j.sajb.2019.10.018
Khatun M.R., Tojo S., Teruya T., Kato-Noguchi H. 2022. Allelopathic activity of Annona reticulata L. leaf extracts and identification of three allelopathic compounds for the development of natural herbicides. Agronomy 12(11): 2883. https://doi.org/10.3390/agronomy12112883
Khatun M.R., Tojo S., Teruya T., Kato-Noguchi H. 2023. The allelopathic effects of Trewia nudiflora leaf extracts and its identified substances. Plants 12(6): 1375. https://doi.org/10.3390/plants12061375
Krumsri R., Iwasaki A., Suenaga K., Kato-Noguchi H. 2022. Assessment of allelopathic potential of Senna garrettiana leaves and identification of potent phytotoxic substances. Agronomy 12(1): 139. https://doi.org/10.3390/agronomy12010139
Lahare R.P., Yadav H.S., Bisen Y.K., Dashahre A.K. 2021. Estimation of total phenol, flavonoid, tannin and alkaloid content in different extracts of Catharanthus roseus from Durg district, Chhattisgarh, India. Scholars Bulletin 7(1): 1-6. https://doi.org/10.36348/sb.2021.v07i01.001
Li C., Yang X., Tian Y., Yu M., Shi S., Qiao B., Zhao C., Mao L. 2021. The effects of fig tree (Ficus carica L.) leaf aqueous extract on seed germination and seedling growth of three medicinal plants. Agronomy 11(12): 2564. https://doi.org/10.3390/agronomy11122564
Li J., Li Y., Fang F., Xue D., Li R., Gao X., Li M. 2022. A novel naturally Phe206Tyr mutation confers tolerance to ALS-inhibiting herbicides in Alopecurus myosuroides. Pesticide Biochemistry and Physiology 186: 105156. https://doi.org/10.1016/j.pestbp.2022.105156
Lopes R.W., Marques Morais E., Lacerda J.J., Araújo F.D. 2022. The bioherbicidal potential of plant species with allelopathic effects on the weed Bidens bipinnata L. Scientific Reports 12(1): 13476. https://doi.org/10.1038/s41598-022-16203-5
Maestre Rodríguez L., Palacios Ortega E., Moreno Medina B.L., Balaguera-López H.E., Hernandez J.P. 2023. Hydroalcoholic extracts of Campomanesia lineatifolia R. & P. seeds inhibit the germination of Rumex crispus and Amaranthus hybridus. Horticulturae 9(2): 177. https://doi.org/10.3390/horticulturae9020177
Marini R.P. 2003. Approaches to analyzing experiments with factorial arrangements of treatments plus other treatments. HortScience 38(1): 117-120. https://doi.org/10.21273/HORTSCI.38.1.117
Motmainna M., Juraimi A.S., Uddin M.K., Asib N.B., Islam A.M., Ahmad-Hamdani M.S., Hasan M. 2021. Phytochemical constituents and allelopathic potential of Parthenium hysterophorus L. in comparison to commercial herbicides to control weeds. Plants 10(7): 1445. https://doi.org/10.3390/plants10071445
Mousavi S.S., Karami A., Haghighi T.M., Alizadeh S., Maggi F. 2021. Phytotoxic potential and phenolic profile of extracts from Scrophularia striata. Plants 10(1): 135. https://doi.org/10.3390/plants10010135
Możdżeń K., Tatoj A., Barabasz-krasny B., Sołtys-lelek A., Gruszka W., Zandi P. 2021. The allelopathic potential of Rosa blanda Aiton on selected wild-growing native and cultivated plants in Europe. Plants 10(9): 1806. https://doi.org/10.3390/plants10091806
Nafees A., Abbas A., Hussain F. 2021. Bioassay test of allelopathic potential of Sunflower (Helianthus annuus L.) against mung bean (Vigna radiata (L.) R. Wilczek). GU Journal of Phytosciences 1(1): 70-79. https://europub.co.uk/articles/-A-716419
Nolan D.G. 1989. Seed germination characteristics of Centaurea diffusa and C. Maculosa. Department of Plant Science, University of British Columbia. https://doi.org/10.14288/1.0097532
Patanè C., Pellegrino A., Cosentino S.L., Testa G. 2023. Allelopathic effects of Cannabis sativa L. aqueous leaf extracts on seed germination and seedling growth in durum wheat and barley. Agronomy 13(2): 454. https://doi.org/10.3390/agronomy13020454
Pintar A., Svečnjak Z., Šoštarčić V., Lakić J., Barić K., Brzoja D., Šćepanović M. 2021. Growth stage of Alopecurus myosuroides Huds. determines the efficacy of pinoxaden. Plants 10(4): 732. https://doi.org/10.3390/plants10040732
Poonpaiboonpipat T., Krumsri R., Kato‐noguchi H. 2021. Allelopathic and herbicidal effects of crude extract from Chromolaena odorata (L.) R.M.King and H.Rob. on Echinochloa crus-galli and Amaranthus viridis. Plants 10(8): 1609. https://doi.org/10.3390/plants10081609
Popoola K.M., Akinwale R.O., Adelusi A.A. 2020. Allelopathic effect of extracts from selected weeds on germination and seedling growth of cowpea (Vigna unguiculata (L.) Walp.) varieties. African Journal of Plant Science 14(9): 338-349. https://doi.org/10.5897/ajps2020.2024
Rastgoo M., Nezami A., Hasanfard A., Nabati J., Ahmadi-Lahijani M.J. 2023. Freezing stress induces changes in the morphophysiological of chickpea and wild mustard seedlings. Legume Science 5(2): e173. https://doi.org/10.1002/leg3.173
Rob M.M., Hossen K., Khatun M.R., Iwasaki K., Iwasaki A., Suenaga K., Kato-Noguchi H. 2021. Identification and application of bioactive compounds from Garcinia xanthophylls hook. For weed management. Applied Sciences 11(5): 2264. https://doi.org/10.3390/app11052264
Scavo A., Restuccia A., Pandino G., Onofri A., Mauromicale G. 2018. Allelopathic effects of Cynara cardunculus L. leaf aqueous extracts on seed germination of some Mediterranean weed species. Italian Journal of Agronomy 13(2): 119-125. https://doi.org/10.4081/ija.2018.1021
Siyar S., Majeed A., Muhammad Z., Ali H., Inayat N. 2019. Allelopathic effect of aqueous extracts of three weed species on the growth and leaf chlorophyll content of bread wheat. Acta Ecologica Sinica 39(1): 63-68. https://doi.org/10.1016/j.chnaes.2018.05.007
Tucuch-Pérez M.A., Mendo-González E.I., Ledezma-Pérez A., Iliná A., Hernández-Castillo F.D., Barrera-Martinez C.L., Anguiano-Cabello J.C., Laredo-Alcalá E.I., Arredondo-Valdés R. 2023. The herbicidal activity of nano-and microencapsulated plant extracts on the development of the indicator plants Sorghum bicolor and Phaseolus vulgaris and their potential for weed control. Agriculture 13(11): 2041. https://doi.org/10.3390/agriculture13112041
Uyun Q., Respatie D.W., Indradewa D. 2024. Unveiling the allelopathic potential of wedelia leaf extract as a bioherbicide against purple nutsedge: A promising strategy for sustainable weed management. Sustainability 16(2): 479. https://doi.org/10.3390/su16020479
Veisi M., Moein M.M., Jahedi A., Mansoori M.S., Sabeti P. 2022. Weed control efficacy: Response of chickpea to pre- and post-emergence herbicides. Gesunde Pflanzen 74(2): 447-456. https://doi.org/10.1007/s10343-022-00621-6
Verdugo-Navarrete C., Maldonado-Mendoza I.E., Castro-Martínez C., Leyva-Madrigal K.Y., Martínez-Álvarez J.C. 2021. Selection of rhizobacteria isolates with bioherbicide potential against Palmer amaranth (Amaranthus palmeri S. Wats.). Brazilian Journal of Microbiology 52(3): 1443-1450. https://doi.org/10.1007/s42770-021-00514-2
Wang X., Wang S., Zhu J., Zuo L., Yang Z., Li L. 2022. Response mechanisms of sugarcane seedlings to the allelopathic effects of root aqueous extracts from sugarcane ratoons of different ages. Frontiers in Plant Science 13: 1020533. https://doi.org/10.3389/fpls.2022.1020533
Zaman F., Iwasaki A., Suenaga K., Kato-Noguchi H. 2021. Allelopathic potential and identification of two allelopathic substances in Eleocharis atropurpurea. Plant Biosystems 155(3): 510-516. https://doi.org/10.1080/11263504.2020.1762779
Závada T., Malik R.J., Kesseli R.V. 2017. Population structure in chicory (Cichorium intybus): A successful U.S. weed since the American revolutionary war. Ecology and Evolution 7(12): 4209-4219. https://doi.org/10.1002/ece3.2994 | ||
|
آمار تعداد مشاهده مقاله: 22 تعداد دریافت فایل اصل مقاله: 29 |
||