تعداد نشریات | 20 |
تعداد شمارهها | 408 |
تعداد مقالات | 3,209 |
تعداد مشاهده مقاله | 2,999,809 |
تعداد دریافت فایل اصل مقاله | 2,073,700 |
CRISPR/Cas9-Based amyE Regulatory Engineering for Enhanced α-Amylase Production to Support Sustainable Starch-Rich Industrial Crop Bioprocessing | ||
Agrotechniques in Industrial Crops | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 10 مهر 1404 اصل مقاله (640.79 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22126/atic.2026.12202.1222 | ||
نویسندگان | ||
Amir Mohammad Ghoorchi Beygi1؛ Ali Mohammad Banaei-Moghaddam2؛ Raheleh Karimi-Ashtiyani* 1 | ||
1Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran | ||
2Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran | ||
چکیده | ||
The sustainable processing of starch-rich industrial crops, such as potatoes, maize, and wheat, is central to the production of value-added products, including bioethanol and high-fructose corn syrup, from these feedstocks. Efficient conversion of crop-derived starch into fermentable sugars relies on robust α-amylase enzymes and their optimal concentrations. Here, we present a proof-of-concept CRISPR/Cas9-based strategy aimed at engineering the regulatory region of the amyE gene in Bacillus subtilis, a GRAS-certified bacterium widely used for industrial enzyme production. Our modular synthetic construct features combined elements, including a high-strength promoter, multiple ribosomal binding sites, and optimized secretion signal, enabling optimization of α-amylase expression and secretion. The modular plasmid was successfully assembled and validated in Escherichia coli, which is used for its rapid cloning capabilities and compatibility with plasmid construction, before transformation into the final B. subtilis production host. This integrated engineering approach in a single construct is expected to yield higher extracellular α-amylase titers than native systems, supporting more efficient industrial starch bioprocessing of starch-rich agricultural feedstocks and advancing green technologies for the industrial crop sector. Future work will focus on quantifying α-amylase activity in engineered strains and validating the approach on agricultural substrates to assess industrial scalability. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Agricultural biomass؛ Bacillus subtilis؛ CRISPR/Cas9؛ Promoter engineering؛ Starch bioprocessing؛ Sustainable biotechnology؛ Synthetic biology | ||
مراجع | ||
Abedi E., Kaveh S., Hashemi S.M. 2024. Structure-based modification of a-amylase by conventional and emerging technologies: Comparative study on the secondary structure, activity, thermal stability and amylolysis efficiency. Food Chemistry 437: 137903. https://doi.org/10.1016/j.foodchem.2023.137903
Altenbuchner J. 2016. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Applied and Environmental Microbiology 82(17): 5421-5427. https://doi.org/10.1128/AEM.01453-16
Ashok P.P., Dasgupta D., Ray A., Suman S.K. 2024. Challenges and prospects of microbial α-amylases for industrial application: a review. World Journal of Microbiology and Biotechnology 40(2): 44. https://doi.org/10.1007/s11274-023-03821-y
Blom E.J., Ridder A.N., Lulko A.T., Roerdink J.B., Kuipers O.P. 2011. Time-resolved transcriptomics and bioinformatic analyses reveal intrinsic stress responses during batch culture of Bacillus subtilis. PLoS One 6(11): e27160. https://doi.org/10.1371/journal.pone.0027160
Casali N., Preston A. 2003. E. coli plasmid vectors : Methods and applications (1st ed. 2003. ed.). Totowa N.J.: Humana Press. https://doi.org/10.1385/1592594093
Dammer L., Carus M., Porc O. 2023. The use of food and feed crops for bio-based materials and the related effects on food security: Promoting evidence-based debates and recognizing potential benefits. Industrial Biotechnology 19(5): 257-271. https://doi.org/10.1089/ind.2023.29324.lda
Duan Y., Jin L. 2024. Genome-wide identification and expression profiling of the α-amylase (AMY) gene family in potato. Genes 15(6): 793. https://doi.org/10.3390/genes15060793
Farooq M.A., Ali S., Hassan A., Tahir H.M., Mumtaz S., Mumtaz S. 2021. Biosynthesis and industrial applications of α-amylase: a review. Archives of Microbiology 203(4): 1281-1292. https://doi.org/10.1007/s00203-020-02128-y
Freudl R. 2018. Signal peptides for recombinant protein secretion in bacterial expression systems. Microbial Cell Factories 17(1): 52. https://doi.org/10.1186/s12934-018-0901-3
Fu G., Liu J., Li J., Zhu B., Zhang D. 2018. Systematic screening of optimal signal peptides for secretory production of heterologous proteins in Bacillus subtilis. Journal of Agricultural and Food Chemistry 66(50): 13141-13151. https://doi.org/10.1021/acs.jafc.8b04183
Gangadharan D., Jose A., Nampoothiri K.M. 2020. Recapitulation of stability diversity of microbial α-amylases. Amylase 4(1): 11-23. https://doi.org/10.1515/amylase-2020-0002
Guan C., Cui W., Cheng J., Liu R., Liu Z., Zhou L., Zhou Z. 2016. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis. New Biotechnology 33(3): 372-379. https://doi.org/10.1016/j.nbt.2016.01.005
Guiziou S., Sauveplane V., Chang H.J., Clerté C., Declerck N., Jules M., Bonnet J. 2016. A part toolbox to tune genetic expression in Bacillus subtilis. Nucleic Acids Research 44(15): 7495-7508. https://doi.org/10.1093/nar/gkw624
Hebelstrup K.H., Sagnelli D., Blennow A. 2015. The future of starch bioengineering: GM microorganisms or GM plants?. Frontiers in Plant Science 6: 247. https://doi.org/10.3389/fpls.2015.00247
Hou J., Liu T., Reid S., Zhang H., Peng X., Sun K., Du J., Sonnewald U., Song B. 2019. Silencing of α-amylase StAmy23 in potato tuber leads to delayed sprouting. Plant Physiology and Biochemistry 139: 411-418. https://doi.org/10.1016/j.plaphy.2019.03.044
Ibba M.I., Timsina J., Odjo S., Palacios N., Singh P.K., He X., Alakonya A., Krupnik T.J., Sonder K. 2025. Challenges in the global cereal supply chain. InFood Safety (pp. 245-270). Elsevier. https://doi.org/10.1016/B978-0-12-819340-2.00006-7
Jujjavarapu S.E., Dhagat S. 2019. Evolutionary trends in industrial production of α-amylase. Recent Patents on Biotechnology 13(1): 4-18. https://doi.org/10.2174/2211550107666180816093436
Jun J.S., Jeong H.E., Hong K.W. 2023. Exploring and engineering novel strong promoters for high-level protein expression in Bacillus subtilis DB104 through transcriptome analysis. Microorganisms 11(12): 2929. https://doi.org/10.3390/microorganisms11122929
Kõressaar T., Lepamets M., Kaplinski L., Raime K., Andreson R., Remm M. 2018. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 34(11): 1937-1938. https://doi.org/10.1093/bioinformatics/bty036
Krishnappa L., Monteferrante C.G., Neef J., Dreisbach A., van Dijl J.M. 2014. Degradation of extracytoplasmic catalysts for protein folding in Bacillus subtilis. Applied and Environmental Microbiology 80(4): 1463-1468. https://doi.org/10.1128/AEM.02799-13
Li Y., Wu Y., Liu Y., Li J., Du G., Lv X., Liu L. 2022. A genetic toolkit for efficient production of secretory protein in Bacillus subtilis. Bioresource Technology 363: 127885. https://doi.org/10.1016/j.biortech.2022.127885
Liu Y., Shi C., Li D., Chen X., Li J., Zhang Y., Yuan H., Li Y., Lu F. 2019. Engineering a highly efficient expression system to produce BcaPRO protease in Bacillus subtilis by an optimized promoter and signal peptide. International Journal of Biological Macromolecules 138: 903-911. https://doi.org/10.1016/j.ijbiomac.2019.07.175
Miao C.C., Han L.L., Lu Y.B., Feng H. 2020. Construction of a high-expression system in Bacillus through transcriptomic profiling and promoter engineering. Microorganisms 8(7): 1030. https://doi.org/10.3390/microorganisms8071030
Nataraj N.B., Sudhakaran R. 2023. Screening of various promoters for increased protein expression: Testing promoters for expression of proinsulin. Journal of Microbiology, Biotechnology and Food Sciences 13(3): e9863. https://doi.org/10.55251/jmbfs.9863
Olawoye B., Jolayemi O.S., Origbemisoye B.A., Oluwajuyitan T.D., Popoola-Akinola O. 2023. Hydrolysis of starch. InStarch: Advances in modifications, technologies and applications (pp. 83-101). Springer, Cham. https://doi.org/10.1007/978-3-031-35843-2_4
Persistence Market Research. 2023. Alpha amylase market. https://www.persistencemarketresearch.com/market-research/alpha-amylase-market.asp
Phan T.T., Nguyen H.D., Schumann W. 2012. Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements. Journal of Biotechnology 157(1): 167-172. https://doi.org/10.1016/j.jbiotec.2011.10.006
Rana N., Walia A., Gaur A. 2013. α-Amylases from microbial sources and its potential applications in various industries. National Academy Science Letters 36(1): 9-17. https://doi.org/10.1007/s40009-012-0104-0
Singh R., Jain R., Soni P., de Los Santos-Villalobos S., Chattaraj S., Roy D., Mitra D., Gaur A. 2024. Graphing the green route: enzymatic hydrolysis in sustainable decomposition. Current Research in Microbial Sciences 7: 100281. https://doi.org/10.1016/j.crmicr.2024.100281
Song Y., Nikoloff J.M., Fu G., Chen J., Li Q., Xie N., Zheng P., Sun J., Zhang D. 2016. Promoter screening from Bacillus subtilis in various conditions hunting for synthetic biology and industrial applications. PLoS One 11(7): e0158447. https://doi.org/10.1371/journal.pone.0158447
Urbanchuk J.M., Kowalski D.J., Dale B., Kim S. 2009. Corn amylase: Improving the efficiency and environmental footprint of corn to ethanol through plant biotechnology. AgBioForum 12(2): 149-154. https://agbioforum.org/389-2/
van Dijl J., Hecker M. 2013. Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microbial Cell Factories 12(1): 3. https://doi.org/10.1186/1475-2859-12-3
Vilpoux O.F., Junior J.F. 2023. Global production and use of starch. InStarchy crops morphology, extraction, properties and applications (pp. 43-66). Academic Press. https://doi.org/10.1016/B978-0-323-90058-4.00014-1
Volkenborn K., Kuschmierz L., Benz N., Lenz P., Knapp A., Jaeger K.E. 2020. The length of ribosomal binding site spacer sequence controls the production yield for intracellular and secreted proteins by Bacillus subtilis. Microbial Cell Factories 19(1): 154. https://doi.org/10.1186/s12934-020-01404-2
Xu J., Liu X., Yu X., Chu X., Tian J., Wu N. 2020. Identification and characterization of sequence signatures in the Bacillus subtilis promoter P ylb for tuning promoter strength. Biotechnology Letters 42(1): 115-124. https://doi.org/10.1007/s10529-019-02749-4
Yang M., Zhang W., Ji S., Cao P., Chen Y., Zhao X. 2013. Generation of an artificial double promoter for protein expression in Bacillus subtilis through a promoter trap system. PLoS One 8(2): e56321. https://doi.org/10.1371/journal.pone.0056321
Yao D., Su L., Li N., Wu J. 2019. Enhanced extracellular expression of Bacillus stearothermophilus α-amylase in Bacillus subtilis through signal peptide optimization, chaperone overexpression and α-amylase mutant selection. Microbial Cell Factories 18(1): 69. https://doi.org/10.1186/s12934-019-1119-8
Yu X., Xu J., Liu X., Chu X., Wang P., Tian J., Wu N., Fan Y. 2015. Identification of a highly efficient stationary phase promoter in Bacillus subtilis. Scientific Reports 5(1): 18405. https://doi.org/10.1038/srep18405
Yu Z., Huang C., Li Y., Du Y., Zhou J. 2019. Influence of the pretreatment method on the hydrolysis of cassava starch factory residue. Environmental Progress & Sustainable Energy 38(2): 624-629. https://doi.org/10.1002/ep.12963
Yuzbashev T.V., Yuzbasheva E.Y., Melkina O.E., Patel D., Bubnov D., Dietz H., Ledesma-Amaro R. 2023. A DNA assembly toolkit to unlock the CRISPR/Cas9 potential for metabolic engineering. Communications Biology 6(1): 858. https://doi.org/10.1038/s42003-023-05202-5
Zhang K., Su L., Wu J. 2020. Recent advances in recombinant protein production by Bacillus subtilis. Annual Review of Food Science and Technology 11(1): 295-318. https://doi.org/10.1146/annurev-food-032519-051750
Zhang M., Song J., Xiao J., Jin J., Nomura C.T., Chen S., Wang Q. 2022. Engineered multiple translation initiation sites: a novel tool to enhance protein production in Bacillus licheniformis and other industrially relevant bacteria. Nucleic Acids Research 50(20): 11979-11990. https://doi.org/10.1093/nar/gkac1039
Zhou C., Ye B., Cheng S., Zhao L., Liu Y., Jiang J., Yan X. 2019. Promoter engineering enables overproduction of foreign proteins from a single copy expression cassette in Bacillus subtilis. Microbial Cell Factories 18(1): 111. https://doi.org/10.1186/s12934-019-1159-0 | ||
آمار تعداد مشاهده مقاله: 3 تعداد دریافت فایل اصل مقاله: 3 |