| تعداد نشریات | 20 |
| تعداد شمارهها | 410 |
| تعداد مقالات | 3,281 |
| تعداد مشاهده مقاله | 3,175,567 |
| تعداد دریافت فایل اصل مقاله | 2,175,554 |
Phytochemical Survey and Antioxidant Activity of Natural Population of Dorema aucheri Boiss. from Dalahoo | ||
| Agrotechniques in Industrial Crops | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 03 آبان 1404 اصل مقاله (601.71 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22126/atic.2025.10722.1148 | ||
| نویسندگان | ||
| Mohamad Norani* 1؛ Omid Kamangar2؛ Ghamar Poodine1 | ||
| 1Department of Horticultural Science, Tarbiat Modares University, Tehran, Iran | ||
| 2Department of Soil Science, Tarbiat Modares University, Tehran, Iran | ||
| چکیده | ||
| Dorema aucheri Boiss. (Bilhar) is an important perennial herb belonging to the Apiaceae family. The bioactive compounds found in D. aucheri have been documented in traditional medicine to have liver-health effects, as well as stimulant, anti-spasmodic, and expectorant properties. Considering the extinction risk of this valuable species, the present study was conducted. Roots, stems, leaves, and flowers of D. aucheri were collected from Dalahoo County (46º 17ʹ 57ʺ N, 34º 16ʹ 50ʺ E), Kermanshah Province, Iran. Their volatile components and compositions were investigated with gas chromatography techniques. The essential oil (EO) yield of D. aucheri was 0.45, 0.2, 0.35 and 0.4 w/w % (relative to dry weight of plant) for roots, stems, leaves and flowers, respectively. The main compounds identified in the oil of root were thymol (15.9%), β-Caryophyllene (11.3%), and β-bisabolene (8.1%). The highest amounts of compounds in stem were β-Caryophyllene (16.4%), thymol (15.3%), β-bisabolene (6.3%), and Caryophyllene oxide (5.1%). The main constituents of leaf oil were heptacosane (17.3%), thymol (14.2%), β-Caryophyllene (10.0%), β-bisabolene (7.0%), and Caryophyllene oxide (5.1%). The major constituents of the flower oil were β-Caryophyllene (20.2%), thymol (12.4%), heptacosane (7.3%), and β-bisabolene (4.1%). A methanolic extract was also prepared from all samples and their total tannin content, saponin, antioxidant activity, including DPPH and FRAP, total phenolic and flavonoid contents were evaluated. The results obtained showed there was a significant difference among all extracts of D. aucheri in terms of the AA, tannin content, saponin, total phenol content and total flavonoid content (p≤0.01). The flower sample showed the maximum antioxidant activity with an IC50 of 148.1 μg ml-1 and FRAP of 23.3 mg Fe2+ g-1 DW. It is suggested to expand the cultivation of this valuable plant in pastures to compensate for the excessive harvesting of the plant. | ||
تازه های تحقیق | ||
| ||
| کلیدواژهها | ||
| Antioxidant activity؛ Bilhar؛ Dalahoo؛ Volatile components؛ β-caryophyllene | ||
| مراجع | ||
|
Aboukhalid K., Al Faiz C., Douaik A., Bakha M., Kursa K., Agacka‐Mołdoch M., Machon N., Tomi F., Lamiri A. 2017. Influence of environmental factors on essential oil variability in Origanum compactum Benth. growing wild in Morocco. Chemistry & Biodiversity 14(9): e1700158. https://doi.org/10.1002/cbdv.201700158
Adams R.P. 2007. Identification of essential oil components by gas chromatography/mass spectrometry (Vol. 456): Allured publishing corporation Carol Stream.
Ahmed H.M., Tavaszi-Sarosi S. 2019. Identification and quantification of essential oil content and composition, total polyphenols and antioxidant capacity of Perilla frutescens (L.) Britt. Food Chemistry 275: 730-738. https://doi.org/10.1016/j.foodchem.2018.09.155
Akbarian A., Rahimmalek M., Sabzalian M.R. 2016. Variation in essential oil yield and composition of Dorema aucheri Boiss., an endemic medicinal plant collected from wild populations in natural habitats. Chemistry & Biodiversity 13(12): 1756-1766. https://doi.org/10.1002/cbdv.201600160
Alagawany M., Farag M.R., Abdelnour S.A., Elnesr S.S. 2021. A review on the beneficial effect of thymol on health and production of fish. Reviews in Aquaculture 13(1): 632-641. https://doi.org/10.1111/raq.12490
Arabjafari S., Golkar P., Esfahani M.T., Taghizadeh M. 2023. Composition of the essential oil of different plant organs in Dorema ammoniacum D. Don and Dorema aucheri Boiss. accessions collected from Iran. Natural Product Research 37(13): 2298-2302. https://doi.org/10.1080/14786419.2022.2037086
Askari Y. 2022. Composition of essential oil of Dorema aucheri Boiss. and Allium jesdianum Boiss. medicinal plants. International Journal of Advanced Biological and Biomedical Research 10(1): 72-83. https://doi.org/10.22034/ijabbr.2022.545885.1374
Asnaashari S., Dadizadeh E., Talebpour A.H., Eskandani M., Nazemiyeh H. 2011. Free radical scavenging potential and essential oil composition of the Dorema glabrum Fisch. CA mey roots from Iran. BioImpacts 1(4): 241. https://doi.org/10.5681/bi.2011.035
Barton D., Chickos J. 2020. The vapor pressure and vaporization enthalpy of (−) β-elemene and (−) β-bisabolene by correlation gas chromatography. The Journal of Chemical Thermodynamics 148: 106139. https://doi.org/10.1016/j.jct.2020.106139
Basgedik B., Ugur A., Sarac N. 2014. Antimicrobial, antioxidant, antimutagenic activities, and phenolic compounds of Iris germanica. Industrial Crops and Products 61: 526-530. https://doi.org/10.1016/j.indcrop.2014.07.022
Biondi F., Balducci F., Capocasa F., Visciglio M., Mei E., Vagnoni M., Mezzetti B., Mazzoni L. 2021. Environmental conditions and agronomical factors influencing the levels of phytochemicals in Brassica vegetables responsible for nutritional and sensorial properties. Applied Sciences 11(4): 1927. https://doi.org/10.3390/app11041927
Bozin B., Mimica-Dukic N., Samojlik I., Jovin E. 2007. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. Journal of Agricultural and Food Chemistry 55(19): 7879-7885. https://doi.org/10.1021/jf0715323
Chakraborty P., Sarker R.K., Roy R., Ghosh A., Maiti D., Tribedi P. 2019. Bioaugmentation of soil with Enterobacter cloacae AKS7 enhances soil nitrogen content and boosts soil microbial functional-diversity. 3 Biotech 9(7): 253. https://doi.org/10.1007/s13205-019-1791-8
Chaudhary P., Janmeda P., Docea A.O., Yeskaliyeva B., Abdull Razis A.F., Modu B., Calina D., Sharifi-Rad J. 2023. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry 11: 1158198. https://doi.org/10.3389/fchem.2023.1158198
Claßen-Bockhoff R., Ajani Y. 2025. Repeated fractionation and umbel receptacle elongation explain the apparent “panicle with simple umbels” in Ferula species (Apiaceae). Frontiers in Ecology and Evolution 13: 1550679. https://doi.org/10.3389/fevo.2025.1550679
Das G., Das S., Talukdar A., Venil C., Bose S., Banerjee S., Shin H.S., Gutierrez-Grijalva E., Heredia J., Patra J. 2023. Pharmacology and ethnomedicinal potential of selected plants species from Apiaceae (Umbelliferae). Combinatorial Chemistry & High Throughput Screening 26(2): 256-288. https://doi.org/10.2174/1386207325666220406110404
Delnavazi M., Tavakoli S., Rustaie A., Batooli H., Yassa N. 2014. Antioxidant and antibacterial activities of the essential oils and extracts of Dorema ammoniacum roots and aerial parts. Research Journal of Pharmacognosy 1(4): 11-18. https://www.rjpharmacognosy.ir/article_6331_0.html
Ezeabara C.A., Okeke C., Aziagba B.O., Ilodibia C.V., Emeka A.N. 2014. Determination of saponin content of various parts of six Citrus species. International Research Journal of Pure and Applied Chemistry 4(1): 137-143. https://doi.org/10.9734/IRJPAC/2014/5831
Gelman F., Binstock R., Halicz L. 2012. Application of the Walkley–Black titration for the organic carbon quantification in organic rich sedimentary rocks. Fuel 96: 608-610. https://doi.org/10.1016/j.fuel.2011.12.053
Hassan S.S., Abdel-Shafy H.I., Mansour M.S. 2019. Removal of pharmaceutical compounds from urine via chemical coagulation by green synthesized ZnO-nanoparticles followed by microfiltration for safe reuse. Arabian Journal of Chemistry 12(8): 4074-4083. https://doi.org/10.1016/j.arabjc.2016.04.009
Hassiotis C.N., Ntana F., Lazari D.M., Poulios S., Vlachonasios K.E. 2014. Environmental and developmental factors affect essential oil production and quality of Lavandula angustifolia during flowering period. Industrial Crops and Products 62: 359-366. https://doi.org/10.1016/j.indcrop.2014.08.048
Hazrati S., Mollaei S., Angourani H.R., Hosseini S.J., Sedaghat M., Nicola S. 2020. Guide to harvesting Heracleum Persicum: how essential oil composition and phenolic acid profile fluctuate at different phenological stages? Food Science & Nutrition 8(11): 6192-6206. https://doi.org/10.21203/rs.3.rs-38118/v1
Hosseini S.A., Naseri H.R., Azarnivand H., Jafari M., Rowshan V., Panahian A.R. 2014. Comparing stem and seed essential oil in Dorema ammoniacum D. Don. from Iran. Journal of Essential Oil Bearing Plants 17(6): 1287-1292. https://doi.org/10.1080/0972060X.2014.977572
Hosseini S.S., Nadjafi F., Asareh M.H., Rezadoost H. 2018. Morphological and yield related traits, essential oil and oil production of different landraces of black cumin (Nigella sativa) in Iran. Scientia Horticulturae 233: 1-8. https://doi.org/10.1016/j.scienta.2018.01.038
Hossiniyan S.A., Latifpour M., Mohammadi B., Jadidi-Niaragh F., Ganji A., Ghalamfarsa G. 2021. Chemical composition and cytotoxic activity of the essential oil from the aerial parts of Dorema aucheri. Journal of Herbmed Pharmacology 10(3): 344-350. https://doi.org/10.34172/jhp.2021.40
Jamshidi-Kia F., Lorigooini Z., Amini-Khoei H. 2017. Medicinal plants: past history and future perspective. Journal of Herbmed Pharmacology 7(1): 1-7. https://doi.org/10.15171/jhp.2018.01
Khan A., Farooq U., Ullah F., Iqbal J., Khan A.F., Zaib S., Khan A.R., Azarpira A. 2014. Determination of biological activities and total phenolic contents of flowers of Jasminum humile and roots of Dorema aucheri. Journal of The Chemical Society of Pakistan 36(2): 291-295.
Luthar Z., Kreft I. 1999. Influence of temperature on tannin content in different ripening phases of buckwheat (Fagopyrum esculentum Moench) seeds. Fagopyrum 16: 61-65.
Masoudi S., Kakävand S. 2017. Volatile constituents of the aerial parts of Terataenium lasiopentalum (Boiss.) Manden., stems and leaves of Dorema ammoniacum D. Don. and leaves, fruits and stems of Leutea petiolare (DC.) M. Pimen from Iran. Journal of the Chilean Chemical Society 62(1): 3311-3314. https://doi.org/10.4067/S0717-97072017000100001
Medda S., Fadda A., Dessena L., Mulas M. 2021. Quantification of total phenols, tannins, anthocyanins content in Myrtus communis L. and antioxidant activity evaluation in function of plant development stages and altitude of origin site. Agronomy 11(6): 1059. https://doi.org/10.3390/agronomy11061059
Mianabadi M., Hoshani M., Salmanian S. 2015. Antimicrobial and anti-oxidative effects of methanolic extract of Dorema aucheri Boiss. Journal of Agricultural Science and Technology 17(3): 623-634. https://dor.isc.ac/dor/20.1001.1.16807073.2015.17.3.6.1
Mirinejad S., Ardakani A.S. 2014. Phenology, distribution and cultivation of endangered medicinal plant species (Dorema aucheri Boiss), in Kohgiluyeh-va-Boyerahmad province, Iran. Journal of Biodiversity and Environmental Sciences 5(5): 177-182.
Moghaddam M., Farhadi N. 2015. Influence of environmental and genetic factors on resin yield, essential oil content and chemical composition of Ferula assa-foetida L. populations. Journal of Applied Research on Medicinal and Aromatic Plants 2(3): 69-76. https://doi.org/10.1016/j.jarmap.2015.04.001
Moron A., Cozzolino D. 2003. Exploring the use of near infrared reflectance spectroscopy to study physical properties and microelements in soils. Journal of Near Infrared Spectroscopy 11(2): 145-154. https://opg.optica.org/jnirs/abstract.cfm?URI=jnirs-11-2-145
Mutlu-Ingok A., Devecioglu D., Dikmetas D.N., Karbancioglu-Guler F., Capanoglu E. 2020. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: an updated review. Molecules 25(20): 4711. https://doi.org/10.3390/molecules25204711
Nabavi S.M., Nabavi S.F., Ebrahimzadeh M.A. 2012. Free radical scavenging and antioxidant activities of Dorema aitchisonii. Journal of Food and Drug Analysis 20(1): 8. https://doi.org/10.38212/2224-6614.2064
Nazir N., Nisar M., Zahoor M., Uddin F., Ullah S., Ullah R., Ansari S.A., Mahmood H.M., Bari A., Alobaid A. 2021. Phytochemical analysis, in vitro anticholinesterase, antioxidant activity and in vivo nootropic effect of Ferula ammoniacum (Dorema ammoniacum) D. Don. in scopolamine-induced memory impairment in mice. Brain Sciences 11(2): 259. https://doi.org/10.3390/brainsci11020259
Nile S.H., Nile A.S., Keum Y.S. 2017. Total phenolics, antioxidant, antitumor, and enzyme inhibitory activity of Indian medicinal and aromatic plants extracted with different extraction methods. 3 Biotech 7(1): 76. https://doi.org/10.1007/s13205-017-0706-9
Norani M., Crowford A., Tahamtani Y., Ebadi M., Ayyari M. 2023. Extraction and essential oils profiling of different Dorema ammoniacum D. Don. organs and evaluation of antioxidant capacity. Journal of Agricultural Science and Technology 25(3): 701-717. https://doi.org/10.22034/jast.25.3.701
Ordonez A., Gomez J., Vattuone M. 2006. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chemistry 97(3): 452-458. https://doi.org/10.1016/j.foodchem.2005.05.024
Owen R., Haubner R., Mier W., Giacosa A., Hull W.E., Spiegelhalder B., Bartsch H. 2003. Isolation, structure elucidation and antioxidant potential of the major phenolic and flavonoid compounds in brined olive drupes. Food and Chemical Toxicology 41(5): 703-717. https://doi.org/10.1016/S0278-6915(03)00011-5
Pant P., Pandey S., Dall'Acqua S. 2021. The influence of environmental conditions on secondary metabolites in medicinal plants: a literature review. Chemistry & Biodiversity 18(11): e2100345. https://doi.org/10.1002/cbdv.202100345
Picard K., Renouf D., Draheim S., Picard C., Wong M.M. 2025. The accuracy of potassium content on food labels in Canada. Nutrients 17(18): 2935. https://doi.org/10.3390/nu17182935
Prinsloo G., Nogemane N. 2018. The effects of season and water availability on chemical composition, secondary metabolites and biological activity in plants. Phytochemistry Reviews 17(4): 889-902. https://doi.org/10.1007/s11101-018-9567-z
Puente-Garza C.A., Meza-Miranda C., Ochoa-Martínez D., García-Lara S. 2017. Effect of in vitro drought stress on phenolic acids, flavonols, saponins, and antioxidant activity in Agave salmiana. Plant Physiology and Biochemistry 115: 400-407. https://doi.org/10.1016/j.plaphy.2017.04.012
Qaderi M.M., Martel A.B., Strugnell C.A. 2023. Environmental factors regulate plant secondary metabolites. Plants 12(3): 447. https://doi.org/10.3390/plants12030447
Rostaei M., Fallah S., Lorigooini Z., Abbasi Surki A. 2018. Crop productivity and chemical compositions of black cumin essential oil in sole crop and intercropped with soybean under contrasting fertilization. Industrial Crops and Products 125: 622-629. https://doi.org/10.1016/j.indcrop.2018.09.044
Sharafzadeh S., Alizadeh O. 2012. Some medicinal plants cultivated in Iran. Journal of Applied Pharmaceutical Science 2(1): 134-137. https://japsonline.com/abstract.php?article_id=358&sts=2
Sim Y.Y., Ong W.T., Nyam K.L. 2019. Effect of various solvents on the pulsed ultrasonic assisted extraction of phenolic compounds from Hibiscus cannabinus L. leaves. Industrial Crops and Products 140: 111708. https://doi.org/10.1016/j.indcrop.2019.111708
Sims J.T. 2000. Soil test phosphorus: Olsen P. Methods of phosphorus analysis for soils, sediments, residuals, and waters 20.
Singh B., Kaur A. 2018. Control of insect pests in crop plants and stored food grains using plant saponins: A review. Lwt 87: 93-101. https://doi.org/10.1016/j.lwt.2017.08.077
Slinkard K., Singleton V.L. 1977. Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture 28(1): 49-55. https://doi.org/10.5344/ajev.1977.28.1.49
Sliwinska E. 2018. Flow cytometry-a modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Horticulturae 30(1): 103. https://doi.org/10.2478/fhort-2018-0011
Sparg S., Light M., Van Staden J. 2004. Biological activities and distribution of plant saponins. Journal of Ethnopharmacology 94(2-3): 219-243. https://doi.org/10.1016/j.jep.2004.05.016
Taubner H., Roth B., Tippkötter R. 2009. Determination of soil texture: comparison of the sedimentation method and the laser‐diffraction analysis. Journal of Plant Nutrition and Soil Science 172(2): 161-171. https://doi.org/10.1002/jpln.200800085
Tomasina F., Carabio C., Celano L., Thomson L. 2012. Analysis of two methods to evaluate antioxidants. Biochemistry and Molecular Biology Education 40(4): 266-270. https://doi.org/10.1002/bmb.20617
Tuladhar P., Sasidharan S., Saudagar P. 2021. Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses biocontrol agents and secondary metabolites (pp. 419-441): Elsevier. https://doi.org/10.1016/B978-0-12-822919-4.00017-X
Yang L., Wen K.S., Ruan X., Zhao Y.X., Wei F., Wang Q. 2018. Response of plant secondary metabolites to environmental factors. Molecules 23(4): 762. https://doi.org/10.3390/molecules23040762
Yeo S.K., Ali A.Y., Hayward O.A., Turnham D., Jackson T., Bowen I.D., Clarkson R. 2016. β‐bisabolene, a sesquiterpene from the essential oil extract of opoponax (Commiphora guidottii), exhibits cytotoxicity in breast cancer cell lines. Phytotherapy Research 30(3): 418-425. https://doi.org/10.1002/ptr.5543
Yousefzadi M., Mirjalili H.M., Alnajar N., Zeinali A., Parsa M. 2011. Composition and in vitro antimicrobial activity of the essential oil of Dorema ammoniacum D. Don. fruit from Iran. Journal of the Serbian Chemical Society 76(6): 857-863. https://doi.org/10.2298/JSC100830074Y
Zengin G., Mahomoodally M.F., Paksoy M.Y., Picot-Allain C., Glamocilja J., Sokovic M., Diuzheva A., Jekő J., Cziáky Z., Rodrigues M.J., Sinan K.I. 2019. Phytochemical characterization and bioactivities of five Apiaceae species: natural sources for novel ingredients. Industrial Crops and Products 135: 107-121. https://doi.org/10.1016/j.indcrop.2019.04.033
Zhang Y., Li Y., Ren X., Zhang X., Wu Z., Liu L. 2023. The positive correlation of antioxidant activity and prebiotic effect about oat phenolic compounds. Food Chemistry 402: 134231. https://doi.org/10.1016/j.foodchem.2022.134231 | ||
|
آمار تعداد مشاهده مقاله: 12 تعداد دریافت فایل اصل مقاله: 14 |
||