| تعداد نشریات | 20 |
| تعداد شمارهها | 410 |
| تعداد مقالات | 3,281 |
| تعداد مشاهده مقاله | 3,175,567 |
| تعداد دریافت فایل اصل مقاله | 2,175,554 |
Impact of Foliar-Applied Iron (Fe) and Zinc (Zn) Nanoparticles on Quinoa Growth and Biochemical Characteristics under Drought Stress | ||
| Agrotechniques in Industrial Crops | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 03 آبان 1404 اصل مقاله (1.7 M) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22126/atic.2025.11159.1163 | ||
| نویسندگان | ||
| Nasim Pakbaz1؛ Heshmat Omidi* 1؛ Hassanali Naghdi Badi1؛ Amir Bostani2؛ Mohammad Hosein Bijeh Keshavarzi1 | ||
| 1Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran | ||
| 2Department of Soil Sciences, Faculty of Agriculture, Shahed University, Tehran, Iran | ||
| چکیده | ||
| Amaranthaceae annual Chenopodium quinoa Willd seeds have more protein, fiber, B vitamins, and minerals than most seeds. In recent years, the cultivation area and consumption of quinoa have increased in the country due to its nutritional properties and ability to grow in harsh environmental conditions. Based on climate change scenarios, long periods of drought are expected, which emphasizes the need for planting and developing new plants that are adapted to these conditions. Quinoa's morphological, biochemical, and physiological responses to nanoparticle Fe and Zn foliar treatment during drought stress were examined. Quinoa development was also compared to zinc and iron. With nutrient supplementation, a 2019 drought experiment assessed quinoa growth and quality. Quinoa (Giza1 cultivar) was evaluated for morphological, biochemical, and physiological parameters throughout two reproductive stages (50 and 100% blooming stage) and two drought stress levels (85% and 85% soil water). Foliar micronutrient applications (control, Zn(ZnSO4), Fe(FeSO4), Zn+Fe, nano-Zn, nano-Fe, nano-Zn + nano-Fe) were studied. Drought stress greatly reduced plant height, main and lateral branch numbers, leaf number, inflorescence length, leaf, stem, and seed dry weight, wet and dry plant weights, and seed output. Foliar fertilizer increased plant height, main and lateral branch numbers, leaves, inflorescence length, stem, seed dry weights, and plant wet and dry weights. Iron and zinc nanoparticles were better for nutrition. Drought stress affects quinoa production less with fertilizer. Also, most metrics were negatively affected by drought stress; however, foliar nano-Fe and nano-Zn at 50% flowering minimized its negative effects. High protein, proline, soluble carbohydrates, water, photosynthetic pigments, antioxidant enzyme activity, and low malondialdehyde. Drought stress-application time-nutrient correlations were significant in most parameters. At 50% blooming, nano-Fe and nano-Zn treatments had the highest protein, proline, soluble carbohydrates, and antioxidant enzyme levels under drought stress. | ||
تازه های تحقیق | ||
| ||
| کلیدواژهها | ||
| Biochemical characteristics؛ Chenopodium quinoa wild؛ Drought stress؛ Micronutrient application | ||
| مراجع | ||
|
Abbasi N., Cheraghi J., Hajinia S. 2019. Effect of iron and zinc micronutrient foliar application as nano and chemical on physiological traits and grain yield of two bread wheat cultivars. Scientific Journal of Crop Physiology 11(43): 85-104. (In Farsi). http://cpj.ahvaz.iau.ir/article-1-1215-fa.html
Abedi Baba-Arabi S., Movahhedi Dehnavi M., Yadavi A., Adhami E. 2011. Effects of Zn and K foliar application on physiological traits and yield of spring safflower under drought stress. Electronic Journal of Crop Production 4(1): 75-95. (In Farsi). https://dor.isc.ac/dor/20.1001.1.2008739.1390.4.1.6.8
Aboueshaghi R.S., Omidi H., Bostani A. 2023. Assessment of changes in secondary metabolites and growth of saffron under organic fertilizers and drought. Journal of Plant Nutrition 46(3): 386-400. https://doi.org/10.1080/01904167.2022.2068439
Adamu C., Baburai Nagesh A.K. 2014. Physiological response, molecular analysis and water use efficiency of maize (Zea mays L.) hybrids grown under various irrigation regimes. African Journal of Biotechnology 13(29): 2966-2976. https://doi.org/10.5897/AJB2013.12002
Adib S., Rezazadeh A., Id M., Naji, Amini Dehaghi M. 2020. Evaluation of sulfur and foliar application of Zn and Fe on yield and biochemical factors of cumin (Cuminum cyminum L.) under irrigation regimes. Journal of HerbMed Pharmacology 9(2): 161-170. https://doi.org/10.34172/jhp.2020.21
Adolf V.I., Jacobsen S.E., Shabala S. 2013. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany 92: 43-54. https://doi.org/10.1016/j.envexpbot.2012.07.004
Afsahi K., Nazari M., Omidi H., Shekari F., Bostani A.A. 2020. The effects of different methods of zinc application on canola seed yield and oil content. Journal of Plant Nutrition 43(8): 1070-1079. https://doi.org/10.1080/01904167.2020.1724299
Ahmad P., Satyawati S. 2008. Salt stress and phyto-biochemical responses of plants - a review. Plant, Soil and Environment 54(3):89-99. https://doi.org/10.17221/2774-PSE
Ahmed N., Ahmad F., Abid M., Aman Ullah M. 2009. Impact of zinc fertilization on gas exchange characteristics and water use efficiency of cotton crop under arid environment. Pakistan Journal of Botany 41(5): 2189-2197.
Alizadeh A. 2004. Soil Physics. Imam Reza University Pub. Mashad. Iran. (In Farsi).
Alsaleem K.A., Moftah R.F., El-Geddawy M.M. 2024. New insights into red and white quinoa protein isolates: nutritional, functional, thermal properties. Processes 12(12): 2822. https://doi.org/10.3390/pr12122822
Alvar-Beltrán J., Napoli M., Dao A., Amoro O., Verdi L., Orlandini S., Dalla Marta A. 2021. Nitrogen, phosphorus and potassium mass balances in an irrigated quinoa field. Italian Journal of Agronomy 16(3): 1788. https://doi.org/10.4081/ija.2021.1788
Amirinejad M., Akbari G., Baghizadeh A., allahdadi I., Shahbazi M., Naimi M. 2015. Effects of drought stress and foliar application of zinc and iron on some biochemical parameters of cumin. Journal of Crops Improvement 17(4): 855-866. (In Farsi). https://doi.org/10.22059/jci.2015.55136
Anjum S.A., Xie X., Wang L.C., Saleem M.F., Man C., Lei W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research 6(9): 2026-2032. https://doi.org/10.5897/AJAR10.027
Arnon D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1): 1-15. https://doi.org/10.1104/pp.24.1.1
Bağcı S., Ekiz H., Yilmaz A., Cakmak I. 2007. Effects of zinc deficiency and drought on grain yield of field‐grown wheat cultivars in central Anatolia. Journal of Agronomy and Crop Science 193(3): 198-206. https://doi.org/10.1111/j.1439-037X.2007.00256.x
Barrs H. 1968. Determination of water deficits in plant tissue. In KOZLOWSKI T (Ed.), Water deficits and plant growth (Vol. 1, pp. 235-368). New York: Academic Press.
Bascuñán-Godoy L., Reguera M., Abdel-Tawab Y.M., Blumwald E. 2016. Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Willd. Planta 243(3): 591-603. https://doi.org/10.1007/s00425-015-2424-z
Bates L.S., Waldren R.P., Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39(1): 205-207. https://doi.org/10.1007/BF00018060
Beauchamp C., Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44(1): 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
Beyrami H., Rahimian M.H., Salehi M., Yazdani Biouki R., Shiran-Tafti M., Nikkhah M. 2020. Effect of irrigation frequency on yield and yield components of quinoa (Chenopodium quinoa) under saline condition. Journal of Agricultural Science and Sustainable Production 30(3): 347-357. (In Farsi). https://dor.isc.ac/dor/20.1001.1.24764310.1399.30.3.20.5
Blum A., Jordan W.R. 1985. Breeding crop varieties for stress environments. Critical Reviews in Plant Sciences 2(3): 199-238. https://doi.org/10.1080/07352688509382196
Bradford K.J. 1986. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience 21(5): 1105-1112. https://doi.org/10.21273/HORTSCI.21.5.1105
Chance B., Maehly A. 1954. The assay of catalases and peroxidases. Methods of Biochemical Analysis 1: 357-424. https://doi.org/10.1002/9780470110171.ch14
Chang C.C., Yang M.H., Wen H.M., Chern J.C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 10(3): 178-182. https://doi.org/10.38212/2224-6614.2748
Chaves M.M., Pereira J.S., Maroco J., Rodrigues M.L., Ricardo C.P.P., OsÓRio M.L., Carvalho I., Faria T., Pinheiro C. 2002. How plants cope with water stress in the field? photosynthesis and growth. Annals of Botany 89(7): 907-916. https://doi.org/10.1093/aob/mcf105
Choluj D., Karwowska R., Jasińska M., Haber G. 2004. Growth and dry matter partitioning in sugar beet plants (Beta vulgaris L.) under moderate drought. Plant, Soil and Environment 50(6): 265-272. https://doi.org/10.17221/4031-PSE
Crista F., Radulov I., Imbrea F., Manea D.N., Boldea M., Gergen I., Ienciu A.A., Bănățean Dunea I. 2023. The study of the impact of complex foliar fertilization on the yield and quality of sunflower seeds (Helianthus annuus L.) by principal component analysis. Agronomy 13(8): 2074. https://doi.org/10.3390/agronomy13082074
Davey M.W., Stals E., Panis B., Keulemans J., Swennen R.L. 2005. High-throughput determination of malondialdehyde in plant tissues. Analytical Biochemistry 347(2): 201-207. https://doi.org/10.1016/j.ab.2005.09.041
Dehghanian Z., Ahmadabadi M., Asgari Lajayer B., Gougerdchi V., Hamedpour-Darabi M., Bagheri N., Sharma R., Vetukuri R.R., Astatkie T., Dell B. 2024. Quinoa: a promising crop for resolving the bottleneck of cultivation in soils affected by multiple environmental abiotic stresses. Plants 13(15): 2117. https://doi.org/10.3390/plants13152117
Dhanapal A.R., Thiruvengadam M., Vairavanathan J., Venkidasamy B., Easwaran M., Ghorbanpour M. 2024. Nanotechnology approaches for the remediation of agricultural polluted soils. ACS Omega 9(12): 13522-13533. https://doi.org/10.1021/acsomega.3c09776
Dhindsa R.S., Plumb-Dhindsa P., Thorpe T.A. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32(1): 93-101. https://doi.org/10.1093/jxb/32.1.93
Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. 2009. Plant drought stress: effects, mechanisms and management. In Lichtfouse E., Navarrete M., Debaeke P., Véronique S., Alberola C. (Eds.), Sustainable Agriculture (pp. 153-188). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-90-481-2666-8_12
Fathi A., Zahedi M., Torabian S. 2017. Effect of interaction between salinity and nanoparticles (Fe2O3 and ZnO) on physiological parameters of Zea mays L. Journal of Plant Nutrition 40(19): 2745-2755. https://doi.org/10.1080/01904167.2017.1381731
Ferreira D.S., Pallone J.A.L., Poppi R.J. 2015. Direct analysis of the main chemical constituents in Chenopodium quinoa grain using Fourier transform near-infrared spectroscopy. Food Control 48: 91-95. https://doi.org/10.1016/j.foodcont.2014.04.016
Fugate K.K., Lafta A.M., Eide J.D., Li G., Lulai E.C., Olson L.L., Deckard E.L., Khan M.F.R., Finger F.L. 2018. Methyl jasmonate alleviates drought stress in young sugar beet (Beta vulgaris L.) plants. Journal of Agronomy and Crop Science 204(6): 566-576. https://doi.org/10.1111/jac.12286
Ghasemi N., Omidi H., Bostani A. 2021. Morphological properties of Catharanthus roseus L. seedlings affected by priming techniques under natural salinity stress. Journal of Plant Growth Regulation 40(2): 550-557. https://doi.org/10.1007/s00344-020-10118-z
Ghassemi-Golezani K., Ghanehpoor S., Dabbagh Mohammadi Nassab A. 2009. Effects of water limitation on growth and grain filling of faba bean cultivars. Journal of Food, Agriculture & Environment 7(3-4): 442-447. https://doi.org/10.1234/4.2009.2623
Grant R.F., Jackson B.S., Kiniry J.R., Arkin G.F. 1989. Water deficit timing effects on yield components in maize. Agronomy Journal 81(1): 61-65. https://doi.org/10.2134/agronj1989.00021962008100010011x
Grewal H.S., Williams R. 2000. Zinc nutrition affects alfalfa responses to water stress and excessive moisture. Journal of Plant Nutrition 23(7): 949-962. https://doi.org/10.1080/01904160009382073
Hemantaranjan A., Garg O.K. 1988. Iron and zinc fertilization with reference to the grain quality of Triticum aestivum L. Journal of Plant Nutrition 11(6-11): 1439-1450. https://doi.org/10.1080/01904168809363900
Horváth E., Szalai G., Janda T. 2007. Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation 26(3): 290-300. https://doi.org/10.1007/s00344-007-9017-4
Hosseini S.N., Jalilian J., Gholinezhad E. 2021. The effect of ascorbic acid, salicylic acid, and nano-micronutrient chelate fertilizer on yield and yield components of quinoa under water-deficit stress. Journal of Crops Improvement 23(3): 561-549. (In Farsi). https://doi.org/10.22059/jci.2021.308905.2441
Jamali S., Goldani M., Zeynodin S.M. 2020. Evaluation the effects of periodic water stress on yield and water productivity on quinoa. Iranian Journal of Irrigation & Drainage 13(6): 1687-1697. (In Farsi). https://dor.isc.ac/dor/20.1001.1.20087942.1398.13.6.13.9
Jamali S., Naderianfar M., Ansari H. 2023. Effects of different levels of irrigation and nitrogen fertilizer on the yield and yield components of quinoa cultivar Giza-1. Water Management in Agriculture 9(2): 91-102. (In Farsi). https://dor.isc.ac/dor/20.1001.1.24764531.1401.9.2.7.0
Kafi M.O., Goldani M.O., Jafari M.H. 2012. Effectiveness of nutrient management in managing saline agro-ecosystems: a case study of lens culinaris medic. Pakistan Journal of Botany 44: 269-274. https://mail.pakbs.org/pjbot/PDFs/44(SI2)/36.pdf
Keshtkar A., Aien A., Naghavii H., Najafi Nezhad H. 2021. Effect of foliar application of jasmonic acid and drought stress on yield and some agronomic and physiologic traits of quinoa (Chenopodium quinoa Willd) cultivars. Environmental Stresses in Crop Sciences 14(2): 403-414. (In Farsi). https://doi.org/10.22077/escs.2020.2402.1711
Khalili Mahalleh J., Roshdi M. 2008. Effect of foliar application of micro nutrients on quantitative and qualitative characteristics of 704 silage corn in Khoy. Seed and Plant Journal 24(2): 281-293. (In Farsi). https://doi.org/10.22092/spij.2017.110804
Kramer P.J. 1983. Problems in water relations of plants and cells. International Review of Cytology 85: 253-286. https://doi.org/10.1016/S0074-7696(08)62375-X
Li X., Wang S., Zhu L., Zhang P., Qi H., Zhang K., Sun H., Zhang Y., Lei X., Li A., Li C. 2025. Leaf hydraulic decline coordinates stomatal and photosynthetic limitations through anatomical adjustments under drought stress in cotton. Frontiers in Plant Science 16: 1622308. https://doi.org/10.3389/fpls.2025.1622308
Lichtenthaler H., Wellburn A.R. 1985. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions 11(5): 591-592. https://doi.org/10.1042/bst0110591
Lin P.H., Chao Y.Y. 2021. Different drought-tolerant mechanisms in quinoa (Chenopodium quinoa Willd.) and djulis (Chenopodium formosanum Koidz.) based on physiological analysis. Plants 10(11): 2279. https://doi.org/10.3390/plants10112279
Liu F., Andersen M.N., Jensen C.R. 2004. Root signal controls pod growth in drought-stressed soybean during the critical, abortion-sensitive phase of pod development. Field Crops Research 85(2-3): 159-166. https://doi.org/10.1016/S0378-4290(03)00164-3
Lum M.S., Hanafi M.M., Rafii M., Akmar A.S. 2014. Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. Journal of Animal and Plant Sciences 24(5): 1487-1493. http://www.thejaps.org.pk/docs/v-24-5/28.pdf
Majlesy A., Gholinezhad E. 2014. Phenotype and quality variation of forage maize (Zea mays L.) with potassium and micronutrient application under drought stress conditions. Research in Field Crop Journal 1(2): 44-55. (In Farsi). https://rfcj.urmia.ac.ir/article_20010_en.html?lang=fa
Marschner H. 2011. Preface to second edition. Marschner's mineral nutrition of higher plants (Third Edition), ix. https://doi.org/10.1016/B978-0-12-384905-2.00026-1
Mirzaei M., Ladan Moghadam A., Hakimi L., Danaee E. 2020. Plant growth promoting rhizobacteria (PGPR) improve plant growth, antioxidant capacity, and essential oil properties of lemongrass (Cymbopogon citratus) under water stress. Iranian Journal of Plant Physiology 10(2): 3155-3166. https://doi.org/10.30495/ijpp.2020.672574
Naderi Arefi A. 2020. Effects of drought stress on non-enzymatic antioxidants and photosynthetic pigments of cotton plant species (Gossypium spp.). Iranian Journal of Cotton Researches 8(1): 137-154. (In Farsi). https://doi.org/10.22092/ijcr.2020.126815.1130
Naghdi Badi H.A., Tolyat Abulhassani S.M., Nazari M., Mehrafarin A. 2017. Phytochemical response of sweet basil (Ocimum basilicum) to application of methanol biostimulant and iron nano-chelate. Journal of Medicinal Plants 16(64): 91-106. (In Farsi). https://dor.isc.ac/dor/20.1001.1.2717204.2017.16.64.7.4
Nakano Y., Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22(5): 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
Omidi H., Naghdi Badi H., Jafarzadeh H. 2015. Seeds of medicinal plants and crops: Shahed University Press. (In Farsi).
Pakbaz N., Omidi H., Naghdi Badi H., Bostani A. 2021. Botanical, phytochemical and pharmacological properties of quinoa medicinal plant (Chenopodium quinoa Willd.): a review. Journal of Medicinal Herbs 12(4): 1-11. https://doi.org/10.30495/medherb.2021.687323
Pinto A., Susana F., Wilckens R., Bustamante L., Berti M. 2021. Production efficiency and total protein yield in quinoa grown under water stress. Agriculture 11(11): 1089. https://doi.org/10.3390/agriculture11111089
Prior R.L., Cao G. 2000. Antioxidant phytochemicals in fruits and vegetables: diet and health implications. HortScience 35(4): 588-592. https://doi.org/10.21273/HORTSCI.35.4.588
Rafiee H., Mehrafarin A., Omidi H., Naghdi Badi H., Khalighi-Sigaroodi F. 2019. Protecting and improving the quantity and quality of essential oils and enzymatic activities of Lippia citriodora H.B.K. by exogenous anti-chilling agents under different temperatures. Acta Physiologiae Plantarum 41(10): 172. https://doi.org/10.1007/s11738-019-2958-y
Rezayi Far Z., Fallahi S., Gholinezhad E. 2018. The effect of drought stress and ultraviolet on antioxidant defensive system of enzyme and non-enzyme in three varieties of wheat (Triticum aestivum L.). Journal of Plant Process and Function 7(24): 155-170. (In Farsi). https://dor.isc.ac/dor/20.1001.1.23222727.1397.7.24.16.1
Saleem A., Zulfiqar A., Ali B., Naseeb M.A., Almasaudi A.S., Harakeh S. 2022. Iron sulfate (FeSO4) improved physiological attributes and antioxidant capacity by reducing oxidative stress of Oryza sativa L. cultivars in alkaline soil. Sustainability 14(24): 16845. https://doi.org/10.3390/su142416845
Shabanzadeh S., Galavi M. 2011. Effect of micronutrients foliar application and irrigation regimes on agronomic traits and yield of black cumin (Nigella sativa L.). Environmental Stresses in Crop Sciences 4(1): 1-9. (In Farsi). https://doi.org/10.22077/escs.2011.94
Shoja T., Majidian M., Rabiee M. 2018. Effects of zinc, boron and sulfur on grain yield, activity of some antioxidant enzymes and fatty acid composition of rapeseed (Brassica napus L.). Acta Agriculturae Slovenica 111(1): 73-84. https://doi.org/10.14720/aas.2018.111.1.08
Singh M., Ganesha Rao R.S., Ramesh S. 1997. Irrigation and nitrogen requirement of lemongrass [Cymbopogon flexuosus (Steud) Wats] on a red sandy loam soil under semiarid tropical conditions. Journal of Essential Oil Research 9(5): 569-574. https://doi.org/10.1080/10412905.1997.9700779
Stewart R.R., Bewley J.D. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology 65(2): 245-248. https://doi.org/10.1104/pp.65.2.245
Swietlik D. 1998. Zinc nutrition in horticultural crops. Horticultural Reviews 23: 109-178. https://doi.org/10.1002/9780470650752.ch3
Wang H., Li Z., Yuan L., Zhou H., Hou X., Liu T. 2021. Cold acclimation can specifically inhibit chlorophyll biosynthesis in young leaves of Pakchoi. BMC Plant Biology 21(1): 172. https://doi.org/10.1186/s12870-021-02954-2
Wang N., Wang F., Shock C.C., Meng C., Qiao L. 2020. Effects of management practices on quinoa growth, seed yield, and quality. Agronomy 10: 445. https://doi.org/10.3390/agronomy10030445
Wojtyla Ł., Lechowska K., Kubala S., Garnczarska M. 2016. Molecular processes induced in primed seeds—increasing the potential to stabilize crop yields under drought conditions. Journal of Plant Physiology 203: 116-126. https://doi.org/10.1016/j.jplph.2016.04.008
Ziaei S.M., Salimi K., Amiri S.R. 2020. Investigation of quinoa cultivation (Chenopodium quinoa Willd.) under different irrigation intervals and foliar application in saravan region. Scientific Journal of Crop Physiology 12(45): 113-125. (In Farsi). https://cpj.ahvaz.iau.ir/article-1-1287-fa.html | ||
|
آمار تعداد مشاهده مقاله: 30 تعداد دریافت فایل اصل مقاله: 23 |
||