| تعداد نشریات | 20 |
| تعداد شمارهها | 410 |
| تعداد مقالات | 3,281 |
| تعداد مشاهده مقاله | 3,175,567 |
| تعداد دریافت فایل اصل مقاله | 2,175,554 |
Assessment of McTPS2 Gene Expression in German Chamomile (Matricaria chamomilla L.) under the Influence of Abiotic Elicitors | ||
| Agrotechniques in Industrial Crops | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 03 آبان 1404 اصل مقاله (501.08 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22126/atic.2025.11947.1210 | ||
| نویسندگان | ||
| Zohreh Chahabkari1؛ Asad Masoumiasl* 1، 2 | ||
| 1Agronomy and Plant Breeding Department, Agriculture Faculty, Yasouj University, Yasouj, Iran | ||
| 2Genetics and Plant Breeding Department, Agriculture Faculty, Tarbiat Modares University, Tehran, Iran | ||
| چکیده | ||
| German chamomile (Matricaria chamomilla L.) is one of the most significant medicinal plants globally, known for its extensive therapeutic applications. Terpenoids, the largest group of secondary metabolites in plants, are synthesized through pathways catalyzed by terpene synthase (TPS), a key enzyme. Elicitors, both biotic and abiotic, play a pivotal role in stimulating physiological responses and enhancing the expression of genes involved in secondary metabolite production. This study investigates the expression of the McTPS2 gene in German chamomile under the influence of different concentrations of salicylic acid (0, 250, 500, 1000, and 1500 μM), methyl jasmonate, and jasmonic acid (0, 50, 100, and 150 μM) at various time intervals (0, 4, 8, 24, 48, and 72 hours post-treatment). This study was conducted in the central laboratory of the Agriculture Faculty of Yasouj University. The elicitors were applied via foliar spraying during the sixth, eighth, and tenth weeks after planting. Leaf samples were collected weekly during late vegetative growth, 48 hours after treatment. Following RNA extraction and cDNA synthesis, McTPS2 gene expression was analyzed using semi-quantitative PCR. The results revealed significant changes in McTPS2 expression in response to elicitor treatments. The highest expression levels were observed with 150 μM methyl jasmonate, 100 μM jasmonic acid, and 1000 μM salicylic acid. Notably, McTPS2 expression peaked at 8 and 24 hours post-treatment with methyl jasmonate and 8 hours with jasmonic acid. However, expression levels subsequently declined to control levels at other time points (4, 48, and 72 hours). These findings demonstrate that all tested elicitors effectively enhanced McTPS2 gene expression and could be utilized to boost secondary metabolite production in German chamomile. | ||
تازه های تحقیق | ||
| ||
| کلیدواژهها | ||
| Elicitor؛ Secondary metabolites؛ Semi-quantitative PCR؛ Terpene synthase (TPS) | ||
| مراجع | ||
|
Chauhan R., Singh S., Kumar V., Kumar A., Kumari A., Rathore S., Kumar R., Singh S. 2021. A comprehensive review on biology, genetic improvement, agro and process technology of German chamomile (Matricaria chamomilla L.). Plants 11(1): 29. https://doi.org/10.3390/plants11010029
Dabiri S.M., Majdi M., Bahramnejad B. 2017. Gene expression analysis of 1-deoxy-D-xylulose 5-phosphate synthase and TcGLIP multifunctional genes in pyrethrum (Chrysanthemum cinerariaefolium Vis.) under methyl jasmonate treatment. Iranian Journal of Medicinal and Aromatic Plants 33(1): 13-24. (In Farsi). https://doi.org/10.22092/ijmapr.2017.109703
Davis E.M., Croteau R. 2000. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. In: Leeper F.J., Vederas J.C. (eds) Biosynthesis. Topics in Current Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48146-X_2
Deschamps C., Raskin I., Simon J.E. 2008. Regulation of essential oil accumulation in basil (Ocimum basilicum L.) in response to elicitation. International Journal of Plant Sciences 169(8): 981-986. https://doi.org/10.1086/590454
Divya P., Puthusseri B., Neelwarne B. 2014. The effect of plant regulators on the concentration of caretonoids and phenolic compound in foliage of coriander. LWT-Food Science and Technology 56(1): 101-110. https://doi.org/10.1016/j.lwt.2013.11.012
El Mihyaoui A., Esteves da Silva J.C., Charfi S., Candela Castillo M.E., Lamarti A., Arnao M.B. 2022. Chamomile (Matricaria chamomilla L.): a review of ethnomedicinal use, phytochemistry and pharmacological uses. Life 12(4): 479. https://doi.org/10.3390/life12040479
Elyasi R., Majdi M., Bahramnejad B., Mirzaghaderi G. 2015. Expression pattern analysis of genes involved in the biosynthetic pathway of monoterpenes and triterpenes in black cumin (Nigella sativa) plants treated with salicylic acid. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research 23(2): 164-174. (In Farsi). https://doi.org/10.22092/ijrfpbgr.2015.102240
Esmaeilzadeh Bahabadi S., Rezaei A. 2013. Increased trigonelline production by salicylic acid in Fenugreek (Trigonella foenum-graecum L.) cell culture. Journal of Cell & Tissue 5(2): 165-172. (In Farsi). https://doi.org/10.52547/JCT.5.2.165
Ghobadi S., Maroufi A., Majd M. 2017. Differential expression of the key genes involved in the biosynthesis of monoterpenes in different tissues and in response to abiotic elicitors in Summer savory (Satureja hortensis). Journal of Cell & Tissue (JCT) 7(3): 275-291. (In Farsi). https://doi.org/10.52547/JCT.7.3.275
Kianersi F., Amin Azarm D., Fatemi F., Jamshidi B., Pour-Aboughadareh A., Janda T. 2023. The influence of methyl jasmonate on expression patterns of rosmarinic acid biosynthesis genes, and phenolic compounds in different species of Salvia subg. Perovskia Kar L. Genes 14(4): 871. https://doi.org/10.3390/genes14040871
Kianersi F., Pour-Aboughadareh A., Majdi M., Poczai P. 2021. Effect of methyl jasmonate on thymol, carvacrol, phytochemical accumulation, and expression of key genes involved in thymol/carvacrol biosynthetic pathway in some Iranian Thyme species. International Journal of Molecular Sciences 22(20): 11124. https://doi.org/10.3390/ijms222011124
Masyita A., Sari R.M., Astuti A.D., Yasir B., Rumata N.R., Emran T.B., Nainu F., Simal-Gandara J. 2022. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry: X 13: 100217. https://doi.org/10.1016/j.fochx.2022.100217
Moradi A., Sharifi M., Mousavi A. 2011. Study on gene expression of Hyoscyamine 6-β hydroxylase (H6H) and Putrescine N-methyl transferase (PMT) isozymes under different concentrations of salicyclic acid in hairy roots and different organs of Atropa belladonna L. Iranian Journal of Biology 24(3): 366-372. (In Farsi).
Naik P.M., Al-Khayri J.M. 2016. Abiotic and biotic elicitors–role in secondary metabolites production through in vitro culture of medicinal plants. InTech. https://doi.org/10.5772/61442
Rashidi N., Khavari-Nejad R.A., Ramak P., Saadatmand S. 2020. The effect of chitosan on gene expression, some morphological and physiological traits of sweet basil (Ocimum basilicum L.) under salinity stress. Acta Scientiarum Polonorum Hortorum Cultus 19(4): 21-30. https://doi.org/10.24326/asphc.2020.4.2
Rasi A., Sabokdast M., Naghavi M.R., Jariani P., Dedičová B. 2024. Modulation of tropane alkaloids’ biosynthesis and gene expression by methyl jasmonate in Datura stramonium L.: A comparative analysis of scopolamine, atropine, and hyoscyamine accumulation. Life 14(5): 618. https://doi.org/10.3390/life14050618
Sadat Noori S.A., Jamshidi M., Mortazavian M.M. 2019. Study the quantitative expression pattern of some involved genes on monoterpenoid biosynthesis pathway and identification of essential compounds affected by methyl jasmonate in Ajowan plant. Agricultural Biotechnology Journal 11(3): 133-152. (In Farsi). https://doi.org/10.22103/jab.2019.2478
Sah A., Naseef P.P., Kuruniyan M.S., Jain G.K., Zakir F., Aggarwal G. 2022. A comprehensive study of therapeutic applications of chamomile. Pharmaceuticals 15(10): 1284. https://doi.org/10.3390/ph15101284
Samadi S., Ghasemnajad A., Alizadeh M. 2015. Investigation on phenylalanine ammonia-lyase activity of artichoke (Cynara scolymus L.) affected by methyl jasmonate and salicylic acid in in-vitro conditions. Journal of Plant Production Research 21(4): 135-148. (In Farsi). https://dor.isc.ac/dor/20.1001.1.23222050.1393.21.4.8.4
Schaller F. 2001. Enzymes of the biosynthesis of octadecanoid‐derived signalling molecules. Journal of Experimental Botany 52(354): 11-23. https://doi.org/10.1093/jexbot/52.354.11
Su S., Liu X., Pan G., Hou X., Zhang H., Yuan Y. 2015. In vitro characterization of a (E)-β-farnesene synthase from Matricaria recutita L. and its up-regulation by methyl jasmonate. Gene 571(1): 58-64. https://doi.org/10.1016/j.gene.2015.06.037
Van Klink J., Becker H., Andersson S., Boland W. 2003. Biosynthesis of anthecotuloide, an irregular sesquiterpene lactone from Anthemis cotula L.(Asteraceae) via a non-farnesyl diphosphate route. Organic & Biomolecular Chemistry 1(9): 1503-1508. https://doi.org/10.1039/B300877K
Wang H., Ma D., Yang J., Deng K., Li M., Ji X., Zhong L., Zhao H. 2018. An integrative volatile terpenoid profiling and transcriptomics analysis for gene mining and functional characterization of AvBPPS and AvPS involved in the monoterpenoid biosynthesis in Amomum villosum. Frontiers in Plant Science 9: 846. https://doi.org/10.3389/fpls.2018.00846
Wang K., Jin P., Cao S., Shang H., Yang Z., Zheng Y. 2009. Methyl jasmonate reduces decay and enhances antioxidant capacity in Chinese bayberries. Journal of Agricultural and Food Chemistry 57(13): 5809-5815. https://doi.org/10.1021/jf900914a
Zhu L., Xu F., Tao T., Liu X., Song Q., Chang J., Zhang W. 2015. Isolation and sequence analysis of a Ttrpene synthase (McTPS2) gene from Matricaria chamomilla. International Journal of Current Research in Biosciences and Plant Biology 2(9): 84-89. http://ijcrbp.com/vol-2-9/Li%20Zhu,%20Feng%20Xu,%20et%20al.pdf | ||
|
آمار تعداد مشاهده مقاله: 10 تعداد دریافت فایل اصل مقاله: 9 |
||