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 Water quality is a worldwide problem which affects human beings lives fundamentally. 

Water scarcity is intensified in result of quality deterioration. Different factors such as 

population increase, economic development and water pollution could be considered as 

the origins of the problem. The study and forecasting of water quality is necessary to 

prevent serious water quality deteriorations in future. Different methodologies have been 

used to predict and estimate the quality of water. In present study using time series 

modeling, the quality of Hor Rood River is studied at Kakareza station using time series 

analysis. 9 parameters of water quality are studied such as: TDS, EC, HCO3
-, SO4

2-, Mg2+, 

Ca2+, Na+, pH and SAR. Investigation of observed time series show that there is an 

increasing trend for all parameters unless Na+, pH and SAR. The order of model for each 

parameter was determined using auto correlation function (ACF) and partial auto 

correlation function (PACF) of time series. ARIMA (autoregressive, integrated, moving 

average) model was found suitable to generate and forecast the quality of river water. 

AIC, R2, RMSE and VE % criteria were used for evaluating the generation and 

forecasting results. Results show that time series modeling is quite capable of water 

quality forecasting. For all generated and forecasted parameters the value of R2 was 

greater than 0.66 Except for SO4
2-. The value of R2 for generated SO42- was 0.48 and this 

value was 0.43 for forecasting this parameter. Also the study show that the quality of 

water is deteriorating based on an increasing trend for the majority of parameters and 

needs serious managerial actions. 
© 2014 Razi University-All rights reserved. 
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1. Introduction 

 
Water pollution is one of the most important environmental issues 

which the world faces. Universal problem of water deficiency and 
shortage of safe and healthy water require the investigation of 
problem. Water pollution, from a local river and basin to regional water 
pollution, from single to complex pollution, from surface water to 
groundwater, has been a serious restraint to sustainable economic 
development. Water quality could be affected by salinity, overdraw of 
ground water, urban and domestic wastewater entrance into surface 
streams as well as agricultural drainage. The purpose of most water 
quality and stream flow studies is to point out the information and 
necessary knowledge to manage water resources as well as their use, 
control and development. Time and money are saved through these 
studies and future development of water resources becomes 
inexpensive. The main objectives of water quality modeling could be 
to: (i) imply cause and effect relationships, (ii) identify impacts of 
pollutant sources, (iii) assess necessary levels of monitoring, (iv) 
evaluate planning and management alternatives, (v) focus on 
additional monitoring and management objectives and (vi) assess and 
evaluate future water quality conditions. Time series analysis is one of 
the useful methods which are applied in water quality modeling and 
forecasting.  

Nowadays time series analyses are used in different aspects of 
science such as physics, economy and engineering. Water resources 
engineering lies within this category as there are many characteristics 
of water bodies, streams and groundwater resources as well as lakes 

and seas which are defined using time series of data. This procedure 
is useful in understanding and modeling the process of a phenomenon 
through which the past observations are generated. 

It is also helpful in forecasting the future values based on the past 
memory. Time series is a string of data over time and there is an 
equal interval between all data. The interval can be defined as daily, 
weekly, monthly as well as yearly time steps. Time series analyzing is 
used in decision making in many hydrological processes and 
operation systems. The aim of time series analysis in hydrology can 
be defined as two main goals: at first it is used to understand and 
model the stochastic mechanism of hydrologic phenomena and at the 
second stage it is used to forecast the future values of the 
phenomena. Many works have been accomplished on hydrological 
components modeling using time series analysis. The application of 
this method for water quality forecasting is possible as well. Also 
evaluation of existing water resources, determining the quality of 
discharge as well as its quantity, identifying its variation on a 
watershed scale and forecasting these variables, could be a main step 
in integrated water resources management. Also stochastic 
characteristics of hydrological phenomena lead the hydrologists and 
water resources engineers towards benefiting from time series 
concepts in modeling and forecasting the future of water resources. 

 
1.1. Applied time-series analysis 

 
Time-series analysis using ARIMA approaches have been used to 

examine runoff and river discharge (Rao et al. 1982, Papamichail and 
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Georgiou 2001; Yurekli et al. 2005), water levels in lakes (Irvine and 
Eberhardt 1992; Sheng and Chen 2011), sediment yield and erosion 
(Hanh et al. 2010), and water quality (Papamichail et al. 2000; 
Lehmann and Rode 2001; Faruk 2010; Hanh et al. 2010; Voudouris et 
al. 2010). 

ARIMA models are capable of reproducing the main statistical 
characteristics of a hydrologic or environmental time series. These 
models also provide information about system dynamics and could be 
used to forecast a time series for the future. Thomas and Fiering, 
(1962) used auto correlated models in their studies on stream 
analyzing. Chow and Kareliotis (1970) analyzed univarite time series 
of rainfall and temperature. They discovered yearly strict and 6 
months slight periodic components in time series. The main step of 
time series application in hydrology was performed by McKerchar and 
Delleur (1974) as they used ARMA (Autoregressive Integrated Moving 
Average) and seasonal modeling in analyzing seasonal characteristics 
of stream parameters. 

Zhang (2003) applied a hybrid of ARIMA and ANN model to take 
the advantages of the ARIMA and ANN models in linear and nonlinear 
modeling. Results showed that the combined model was capable of 
forecasting the real data sets more accurately in comparison with the 
separately applied methods of ANN and ARIMA.  

Jalal Kamali (2006) also used time series models for monthly 
inflows to Jiroft dam. The results of this study showed that time series 
modeling is capable of identifying and forecasting monthly stream 
pattern and integrated water resources management. Also Komornk 
et al. (2006) studied hydrological time series in Czech through which 
high capability of forecasting by this kind of modeling was proved. 
Dalme and Yalcin (2007) applied time series analyzing in Mississippi 
River to forecast the values of flood. The results of their study showed 
the capability of time series modeling application in generating daily 
discharge as well as validity of forecasting. There are many studies 
which have been focused on water quality parameters mentioned as 
follow. Khashei and Bijari (2010) applied an artificial neural network 
(pdq) model to estimate time series forecasting. In this paper, a new 
hybrid model of ANN was introduced using ARIMA models in order to 
achieve a more accurate forecasting model than artificial neural 
networks. The empirical results with three well-known real data sets 
showed that the proposed model can be an effective way to improve 
forecasting accuracy achieved by artificial neural networks. The 
research proposed the application of model as a convenient 
alternative method to forecast accurately thanks to times series 
capabilities. 
 
1.2. Applied time series analysis on surface water quality 
 

Hirsch et al. (1982) introduced techniques to analyze monthly 
water quality data for monotonic trends. The first procedure is a non-
parametric test to detect trend, which is used for seasonal time series. 
The second method of seasonal Kendall estimator estimates the 
magnitude of trends. The third procedure provides a tool to test 
temporal changes in correlation of constituent concentration and 
stream flow. Also El-Shaarawi et al. (1983) studied temporal changes 
in water quality parameters such as PH, Alkalinity, total Phosphorous 
and Nitrate concentrations using a 5-year data series of Niagara (on 
Ontario lake). Results showed that PH and Alkalinity were decreasing 
while Nitrate was increasing. Yu et al., (1993) examined surface water 
quality data of the Arkansas, Verdigris, and Neosho as well as Walnut 
river basin to study trends in 17 major constituents using 4 different 
nonparametric methods. Robson and Neal (1996) studied the trend of 
ten-year upland stream and bulk deposition water quality data from 
Plynlimon, mid wales through the seasonal Kendall test, the stream 
water dissolved organic carbon was increasing over time. However, 
any increase for PH was not found. It was suggested that long term 
monitoring programs should be applied for several decades.  

In a study accomplished by Turner et al. 1995, Long-term 
simulations results of Lake Bosumtwi in Ghana, showed that 
stochastic climatic variations very similar to those observed in this 
century could produce the full range of lake levels observed in terrace 
deposits. The low salinity of about 1% suggests that dissolved solutes 
were removed by Lake Overflow in the recent geological past. 

Primarily Graphical and statistical time series techniques have 
been used to analyze the trends and specified time changes, in river 
water quality data. The information obtained may be associated with 
some socio-economic variables, such as industrial or agricultural 
development, urban increase and wastewater discharge around or 
upstream of the measure station. Such a study may now be applied to 
more rural stations in order to compare the evolution of water quality 

and perhaps, historical monthly average values to evaluate the 
seasonality effect on annual trends (Gun and Vilagines 1997). 

Papamichail et al. (2000) examined stochastic models to improve 
understanding and forecasting of monthly flow and some water quality 
parameters of Strymon River (Greek part) in an effort to reduce the 
negative impacts of incurred by interests using the river. Especially, 
they developed seasonal and nonseasonal ARIMA models for 
Strymon River using the time series of monthly measurements of flow 
and some water quality parameters. The selected models for each 
parameter data set can be used to forecast monthly values of one or 
more time periods ahead. 

Antonopoulos et al. (2001) analyzed the time series of water 
quality parameters and the discharge of Strymon River in Greece from 
the 1980 to1997. The nonparametric Spearman’s criterion was used 

to detect the trends for: discharge, ECw, DO, SO4
2-, Na+, K and NO3

3-. 

The Verification of the best fitted models was performed using χ2 and 
Kolmogorov-Smirnov tests. The relationships between concentration 
and loads of constituents of both with the discharge were investigated 
as well. In spite of the relation between loads and discharge (r> 0.9), 
the correlation between concentrations and discharge is not good (r< 
0.59). Ahmad et al., 2001, accomplished a study to analyze water 
quality data collected from Ganges River in India. Three approaches 
of stochastic modeling such as: multiplicative ARIMA model, 
deseasonalised model and Thomas–Fiering model were applied to 
model the observed time series of water quality. The multiplicative 
ARIMA model having non- seasonal and seasonal components we 
identified as a convenient model. The de seasonalised modeling 
approach was recommended to forecast water quality parameters of 
the river. 

Through a water quality monitoring program (New Zeland) 
Stansfield (2001) illustrated the importance of considering detection 
limits of variables and sampling frequencies through analyzing the 
trends in water quality time series using nonparametric seasonal 
Kendall test and Sen Slope test. Result showed that if the sampling 
frequency was changed from monthly to quarterly fewer trends were 
detected. What is more results showed that the quarterly data present 
with a different magnitude in terms of slope in comparison with 
monthly data. Gangyan et al. (2002) investigated the temporal 
sediment load characteristics of the Yangtze River using the turning 
point test, Kendall’s rank correlation test and the Anderson 
correlogram test to prove randomness and determine the trend. The 
annual sediment load data from 1950 to 1990 and the monthly 
sediment load data from 1950 to 1969 were used. The stochastic 
component was modeled using autoregressive model. Using the AR 
(1) model for the dependent stochastic component, 100 years of 
monthly sediment data were generated and the observed and 
generated data matched well. 

Jassby et al. (2003) developed a time series model for Secchi 
depth in Lake Tahoe, USA considering an understanding of inter 
annual variability. The Secchi depth was found sometimes over 40 m. 
however the mean annual Secchi disk depth has declined about 10 m 
since 1967 inspiring a large scale restoration program. Yearly 
variability was extremely high, obscuring restoration actions and 
conformance with water quality standards. The model suggested a 
tool to determine the compliance with water quality standards when 
precipitation anomalies may persist for years. Also some studies have 
focused on water temperature time series such as Webb et al. (2003) 
who showed that when discharge is below the annual median, 
correlations between air and water temperature is high. Kurunc et al. 
(2005) applied time series analysis for water quality constituents and 
stream flow of the Yesxilirmak River at Durucasu which is a monitoring 
station. Two modeling approaches, ARIMA and Thomas–Fiering were 
evaluated in this study. A 13-year monthly time series records were 
used to obtain the best model of each water quality constituent and 
stream flow from both modeling approaches. The results of study 
showed that that between two approaches, for Yesxilirmak River 
Thomas–Fiering model presents more reliable forecasting of water 
quality constituents and stream flow than ARIMA model. 

Panda et al. (2011) studied trends in sediment load of the tropical 
river basin of India and explored the influence of climate and human 
forcing mechanisms on the land ocean fluvial system. Sediment time 
series of different timescales during the period 1986- 87 to 2005- 06 
from 133 gauging station were analyzed. Results showed significant 
diminishing in sediment load in the tropical river basins. The rainfall 
characterized by the non-significant decreasing trends and frequent 
drought years was found to be the reason of sediment load reductions 
for most of the river basins. Also results showed that the maximum 
reduction in sediment loads was referred to Narmada River among the P
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tropical rivers (2.07×106 t / yr) because of construction of the dam. 
Also Irvine et al. (2011) accomplished a study on temporal variability 
of turbidity, dissolved oxygen, conductivity, temperature, and 
fluorescence in the lower Mekong River. Results showed that A 
strongly developed vertical variation of turbidity, DO, and conductivity 
in the flooded forest fringe may be related to a combination of factors, 
including dissolved material release from bed sediment and a floating 
organic-rich particulate layer near the bottom of the lake.  

Halliday et al. (2012) studied two hydrochemical time-series 
derived from stream samples taken in the Upper Hafrencatchment, 
Plynlimon, Wales. A subset of determinants such as: aluminium, 
calcium, chloride, conductivity, dissolved organic carbon, iron; nitrate, 
pH, silicon and sulphate were examined within a framework of non-
stationary time-series analysis to identify determinant trends, 
seasonality and short-term dynamics. The results demonstrate that 
both long-term and high frequency monitoring provide valuable and 
unique insights into the hydrochemistry of a catchment. Such studies 
moving forward demonstrate the need for both long-term and high-
frequency monitoring to facilitate a thorough understanding of 
catchment hydro chemical dynamics. 

Different studies on time series analyzing in water resources 
management demonstrate the efficiency and necessity of this kind of 
modeling as it takes into account the stochastic nature of hydrological 
processes such as discharge and climatology. Present study aims to 
apply this methodology on chemical water quality properties. In 
present study water quality parameters of Hor Rood is investigated at 
Kakareza station. The methodology and the study area are presented 
at the following stages. 
The objectives of this study are to: 
(i) plot time series of data to find any possible trend, 

(ii) Omit the trend which demonstrates a deterministic nature of data, 
(iii) Obtain the best model fits for each time series of parameters using 
a stochastic modeling approach including ARIMA, and  
(iv) Evaluate the performance of modeling approach using five-year 
observed data vs. forecasted data 
 
2. Methodology and the study area 
2.1. The study area 
 

The study area is located in the west of Iran in Kuhdasht region 
which is shown in Fig. 1. Kakareza station of Hor Rood River lies at 
48o 15' E and 33o 43' N. The upstream area of the station is about 
1148 Km2 located at Kashkan sub-basin of Karkheh watershed. The 
topography in the Karkheh watershed varies spatially with elevation 
ranging from 3 to more than 3500 masl. The average value of 
temperature varies from -3 to 21 0C across Kashkan basin. The mean 
annual precipitation of the basin varies between 345 mm/yr and 849 
mm/yr. Also evaporation of the basin varies from 25 to 2922 based on 
a yearly average. The contribution of rainfall, snow and Karstic springs 
is significant to discharge of Kashkan River. Also Kakareza River is 
the main tributary of this river.  

The land use of the study area is composed of nearly 26% 
agriculture, 16.9% pasture, 39.33 % forest, 0.12 % residential area 
and about 2.5 % of the area is composed of other kinds (Jamab 
Consulting Engineers 2005). Based on field studies agricultural 
drained waters and industrial waste waters are either directed or flow 
through surface streams as well as residential litters and swages. The 
time series of 9 water quality parameters such as TDS, EC, HCO3

-, 
SO4

2-, Mg2+, Ca2+, Na+, pH and SAR of Kakareza station at Hor Rood 
River were studied in this research. 

 

 
Fig.1. The location of the study area. 

 
 

 
2.2. Methodology 
 

Stochastic models reveal time series characteristics in terms of 
correlation as well as consider the randomness of phenomenon 
although they do not consider their physical nature. This method 
analyzes the past of the time series with respect to successive 
correlation which is used as system input in other words. The present 
or the future is then predicted as the system output. Two main 
applications of the time series models are generating simulated 
samples and forecasting hydrologic events. Forecasted time series 
are used as input for analyzing complex water resources systems. 
Generated series could show many possible hydrologic conditions 
that do not appear in the historic series explicitly. Consequently, using 
simulated time series, different designs and operational strategies can 
be tested under various conditions. Forecasted data from known 
historic observations can help to assess and evaluate options for a 
real system operation. 

Although time series modeling originated from different scientific 
fields, it has demonstrated its capability and reliability in stochastic 
hydrology, and the applications of time series analysis in water 
resources management are important. Development of stochastic 
modeling in hydrology began at the beginning of the 1960s, when time 

series analyses of hydrologic phenomena were extended to the 
synthetic generation of stream flow using a table of normal random 
numbers. Thomas and Fiering (1962) were the first to propose a first-
order Markov model to generate stream-flow data. The classic book 
on time series analysis by Box and Jenkins (1976) presents the 
foundation of modern hydrologic stochastic modeling eq. (1): 
 
yt= f(xt, xt-1, …;yt-1, yt-2, …; 1, 2, …) + ε                                          (1) 
 

where f is the selected mathematical function; yt is the predicted 
output at time t; yt–1, yt–2, ... , are the successive members of the 
output time series recorded at corresponding time intervals  t –1, t –2; 
xt, xt–1, xt–2, ... , are the successive members of the input time series 
recorded at time intervals t, t –1, t –2; 1, 2, ... , are the model 
parameters found by mathematically minimizing the differences 
between estimated (calculated) and observed yt values; ε is the model 
error (residual) given as the difference between the calculated and the 
recorded value of the output series at time t. 

Stochastic modeling generally follows the approach proposed by 
Box and Jenkins, (1976), who introduced autoregressive moving 
average (ARMA) models. The mathematical formulation of ARMA 
models is written as Eq. (2):  
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Zt=φ1Zt-1+…+φpZt-p+αt-θ1αt-1-…-θqαt-q                                            (2) 
 
where Zt represents the time dependent series, φi, i=1,2,..., p are 
nonseasonal AR parameters, θi, i=1,2,..., q are the nonseasonal MA 
parameters,Time series models used to generate synthetic time series 
can be classified into autoregressive models (AR (p)), moving average 
models (MA (q)), and their combination, autoregressive moving 
average (ARMA (p, q)) with variations, such as autoregressive, 
integrated moving average (ARIMA) models (p, d, q) and others, 
where p and q are the orders of autoregressive and moving average 
terms, respectively, and "d " is an order of differencing.  

An autoregressive model estimates values for the dependent 
variable, Zt, as a regression function of previous values Zt–1, Zt–2, ..., 
Zt–n. A moving average model is conceptually a linear regression of 
the current value of the series against the white noise or random 
shocks of one or more prior values of the series. 

An autoregressive (AR) model, which is called a Thomas-Fiering 
model, has been applied extensively in hydrology for modeling annual 
and periodic hydrologic time series. Autoregressive (AR) models 
basically estimate values for the dependent variable, Zt, as regression 
function of previous values, Zt-1, Zt-2 ... Zt- n. An AR model of order 1 
(i.e. an AR (1) model) can be expressed as eq. (3):  
 

Zt = φ1Zt−1 + αt                                                             (3)          
 
where, Zt and Zt-1 are the deviations from the mean of the time series, 
φ1 is the first-order AR coefficient describing the effect of a unit 
change in Zt-1 on Zt, and αt represent random shock errors or white 
noise. Values for αt are assumed normally and independently 
distributed with zero mean and constant variance. Model stationarity 
requires that the variance of Zt be non-negative and finite (Vandaele 
1983) and for these conditions to be met, |φ1| must be less than 1. 
Higher order AR models are possible, much like a multiple regression, 
and in this case, the absolute value of each AR coefficient should be 
less than 1. 

Moving average (MA) models incorporate past random 
fluctuations to represent the time series and an MA model of order 1 
(i.e. an MA (1) model) can be expressed as eq. (4): 
 

Zt = αt − θ1 αt-1                                                            (4)          
 
where, θ1 is the MA coefficient to be estimated and the random 
shocks (αt) are assumed normally and independently distributed with 
mean 0 and constant variance. The model structure requires the 
condition of reversibility to be met and | θ1 | therefore must be less 
than 1. Values greater than 1 indicate that observations further in the 
past have a greater influence on Zt than more recent observations 
which is unlikely in hydrologic time series. Higher order of MA models 
is possible, and like the AR model coefficients, the absolute value of 
each MA coefficient should be less than 1.  

A parsimonious model can be achieved using a mixed ARMA 
model as a combination of a moving average process and an 
autoregressive process rather than a merely AR or MA model. 
Therefore, low-order of ARIMA models has been widely used in 
hydrological practice (Salas et al., 1982; Weeks and Boughton 1987; 
Padilla et al., 1996; Montanari et al. 2000). 

The statistical structure of a time series should be represented by 
a parsimonious model, and in some cases, parsimony can be 
achieved using a mixed (ARMA) model rather than a pure AR or MA 
model. As such, it would be more parsimonious to represent a time 
series with an ARMA (1, 1) model than an AR (3) model because 
fewer model parameters need to be estimated. It is possible to mix 
models because these models theoretically can be rewritten as pure 
AR or MA models of infinite order (Vandaele 1983). Furthermore, a 
hydrologic time series is the result of several interactive processes 
that may have both a seasonal and a random fluctuation component. 
The mixed model structure can provide additional flexibility in 
describing the result of the interaction between the processes (Salas 
et al. 1980). 
 
2.3. Modeling water quality time series of Hor Rood River 
 

The main goal of a time series analysis may be to understand 
seasonal changes and/or trends over time. Plotting the data against 
time was accomplished as the first step of analyzing time series. Time 

plot show a lot of information about the time series. Trends and 
seasonal variations are often evident in time plots. Hydrologic time 
series frequently exhibit a regular seasonal pattern that can be 
removed by standardizing the data for the seasonal mean and 
standard deviation and then retrending the forecasts using the inverse 
of the deseasonalizing transformation. Also time plots indicate the 
presence of outliers in the time series which are observations that are 
not consistent with the rest of the data. 

However, another goal that is often of primary importance is to 
understand and model the correlational structure in the time series. 
This type of analysis is generally done on stationary processes. A 
stationary process is one that looks basically the same at any given 
time point. That is, a stationary time series is one without any 
systematic change in its mean and variance and does not have 
periodic variations.  

Many studies have been written about the theory of ARIMA 
modeling as well as its applications (Pankratz, 1983; Vandaele, 1983; 
Nelson, 1973; Box and Jenkins, 1976). Here a brief description is 
presented to point out main stages accomplished in this study.  
The basic stages in ARIMA modeling are composed of: (1) identifying 
the autocorrelation and partial autocorrelation of time series, (2) 
estimating the orders of the identified model, and (3) verify the model 
through standard tests. The results of time series analyzing of this 
study are explained in the following stage. 
In this study 8 river quality parameters were studied. All series showed 
trend line. MINITAB 14 was used to analyze these 9- time series. Also 
Normality test of series was investigated using Easy fit. All series were 
normal. Then ACF and PACF of time series were plotted at next 
stage. Fig. 2 shows the ACF and PACF for TDS time series. Based on 
this Figure p= 1 and q= 3 is suggested for TDS time series. Fig. 3 
shows the ACF and PACF of EC time series. For EC p= 1 and q=2 is 
offered. ACF and PACF of HCO3

- time series are shown in Fig. 4 and 
p=1 and q=2 is suggested for HCO3

-.  
Also ACF and PACF of SO4

2- are demonstrated in Fig. 5. P=1 and 
q=2 is proposed for the series. Fig 6 presents the ACF and PACF of 
Ca2+ and p=1 and q=2 is suggested for the series. Fig 7 shows the 
ACF and PACF of Mg2+. As it is clear in the Fig. 7 there is not any 
autocorrelation between data. ACF and PACF of Na+ are shown in 
Fig. 8. P=1 and q=2 is proposed for the series. Fig. 9 shows the ACF 
and PACF for pH series. P= 1 and q= 1 is suggested for this series. 
And finally ACF and PACF of SAR are shown in Fig. 10. P=1 and q=2 
is offered for SAR series. 

All parameters suggest the value of p= 1 except Mg2+. At the 
following steps generation of data are accomplished and the results of 
it are demonstrated for TDS, EC, HCO3

-, SO42-, Ca2+, Na+, pH and 
SAR respectively. The standard (Z) time series of all parameters were 
plotted at the second stage, which are shown in Fig. 11. Using one 
difference the data were transformed to make a yearly stationary time 
series.  

After identifying the ACF and PACF and removing the trend of 
each time series first the order of model was determined and then 4 
criteria such as Akaike Information Criterion (AIC), Determination 
Coefficient (R2), Root Mean Square Error (RMSE) and Mean Absolute 
Percentage Error (MAPE %) (Karamouz and Araghinejad 2005) were 
used to compare the results of series generation through suggested 
models. The value of AIC is estimated through eq. (5): 

 
 

AIC= n× Ln (σ2) + 2 × (p+ q)                                                            (5) 
 

 
where, σ denotes the standard error of residuals; n shows the sample 
size; p and q show the order of AR and MA, respectively. 
Also the value of VE % is calculated using eq. (6): 
 

n
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i 1 t

y y
100

y
MAPE
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

 

                                                               
(6) 

 

 
where, yt and ŷt show the observed and estimated values respectively 
and n is the sample size. A thirty-five (35) year time series were 
generated for each parameter. 
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Fig. 2. ACF and PAC of TDS time series. 
 
 

              
 

Fig. 3. ACF and PAC of EC time series. 
 
 

               
 

Fig. 4. ACF and PAC of HCO3
- time series. 

 
 

              
 

Fig. 5. ACF and PAC of SO4
2- time series. 
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Fig. 6. ACF and PAC of Ca2+ time series. 
 

            
 

Fig. 7. ACF and PAC of Mg2+ time series. 
 

              
 

Fig. 8. ACF and PAC of Na+ time series. 
 
 

 

          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. ACF and PAC of pH time series.  
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Fig. 10. ACF and PAC of SAR time series. 
 

 
4. Results 
4.1. Results of data generation  
 

Time series of TDS values shows a positive trend which was 
removed through one difference. The best fitted model of the series 
based on ACF and PACF, AIC, R2, RMSE and MAPE is demonstrated 
in Table 1. Results show that the model is capable of modeling the 
time series well.  

 
Table 1. The results of TDS generation, order (1, 3). 

MODEL R2 AIC RMSE MAPE % 

(1,1,3) 0.73 -45.66 0.07 0.64 

(2,1,3) 0.78 -49.13 0.07 0.86 

(3,1,3) 0.76 -45.85 0.07 0.63 

 
For the second parameter, as it is clear from Fig. 11, EC time series 
follows an increasing trend. Table 2 shows the results for generating 
and choosing the best fit after removing the trend. 

Standardized time series of HCO3
- is presented in Fig. 11. HCO3

- 
follows an increasing slope. Modeling was accomplished after trend 
elimination. Table 3 shows the results of modeling time series for this 
parameter. 

Table 2. The results of EC generation, order (1, 2). 
 

MODEL R2 AIC RMSE MAPE % 

(1,1,3) 0.72 -46.00 0.07 8.11 

(2,1,3) 0.81 -54.11 0.06 3.90 

(3,1,3) 0.79 -54.55 0.06 1.28 

 
Table 3. The results of HCO3

- generation, order (1, 2). 

MODEL R2 AIC RMSE MAPE % 

(1,1,2) 0.67 -29.22 0.10 4.16 

(2,1,1) 0.61 -21.73 0.11 3.19 

(1,1,3) 0.75 -35.69 0.08 3.17 

(2,1,3) 0.76 -35.50 0.08 3.20 

(3,1,3) 0.76 -33.61 0.08 3.21 

 
Also Z time series of SO4

2- is shown in Fig. 11. The results of 
generation after trend elimination and the best fit are shown in table 4. 
Results show that ARIMA modeling for this parameter is rather 
capable of predicting as well as previous parameters. 
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  Fig. 11. The standard time series of TDS, EC, HCO3
-, SO42-, Ca2+, Na+, pH and SAR.  

 
 

 

 

Table 4. The results of SO4
2- generation, order (1, 1). 

MODEL R2 AIC RMSE MAPE % 

(1,1,2) 0.19 -1.01 0.15 1.08 
(2,1,2) 0.35 -6.89 0.13 1.47 
(1,1,3) 0.43 -11.37 0.12 1.11 
(2,1,3) 0.39 -6.92 0.13 1.26 
(1,1,1) 0.28 -1.95 0.15 2.04 
(2,0,1) 0.29 -7.12 0.14 1.48 
(2,1,1) 0.28 -0.01 0.15 2.04 

 
Also time series of Z for Ca2+ is presented in Fig. 11. The results of 
generating presented in Table 5 show that the selected model, shown 
in Table 5, is capable of modeling the series quite well. 

 

Table 5. The results of Ca2+ generation, order (1, 1). 

MODEL R2 AIC RMSE MAPE % 

(1,0,1) 0.59 -61.39 0.06 1.32 
(1,0,2) 0.67 -66.36 0.06 1.33 
(1,1,1) 0.60 -61.90 0.06 1.15 
(1,1,2) 0.70 -69.94 0.05 1.16 
(2,1,1) 0.76 -76.41 0.05 1.23 
(2,1,2) 0.76 -74.52 0.05 1.22 

 
Z time series of Na+ show that series follow a decreasing trend. 
Modeling was done for Na+ series after trend elimination. Also the 
results of modeling are presented in Table 6. The results show that 
the selected model is capable of modeling the series. Time series of 
pH values shows a decreasing trend which was removed through one 
difference. Table 7 shows the results of generating for the series. The 
results show that the model is quite capable of generating the data. 
Finally modeling the SAR series was done after trend elimination. 
Table 8 shows that selected model is capable of modeling the series 
properly. 

 
4.2. The results of forecasting  
 

Fig. 12 shows the results of forecasting 5 data for the 5 last years. 
 

to evaluate the selected models. These results are shown for time 
series of TDS, EC, HCO3

-, SO42-, Ca2+, Na+, pH and SAR, 
respectively. 

 
Table 6. The results of Na+ generation, order (1, 2). 

MODEL R2 AIC RMSE MAPE % 

(1,0,1) 0.69 -42.63 0.09 0.66 
(1,1,1) 0.70 -42.62 0.08 0.61 
(1,0,2) 0.71 -42.87 0.08 0.73 
(2,0,1) 0.70 -41.23 0.09 0.68 
(2,0,2) 0.72 -41.55 0.08 0.70 
(1,1,2) 0.72 -43.14 0.08 0.64 
(2,1,2) 0.74 -42.89 0.08 0.61 
(2,1,1) 0.74 -44.75 0.08 0.66 
(1,1,3) 0.72 -40.54 0.08 0.66 

 

 
Table 7. The results of pH generation, order (1, 2). 

MODEL R2 AIC RMSE MAPE % 

(1,0,1) 0.40 -12.67 0.13 1.91 
(1,0,2) 0.32 -5.99 0.14 1.60 
(2,0,2) 0.45 -11.97 0.13 1.26 
(1,1,1) 0.53 -17.38 0.12 3.12 
(2,1,1) 0.52 -14.94 0.12 3.18 

 
Table 8. The results of SAR generation, order (2, 2). 

MODEL R2 AIC RMSE MAPE % 

(1,1,1) 0.76 -39.42 0.09 0.92 
(1,1,2) 0.77 -38.36 0.09 0.93 
(2,1,2) 0.84 -50.05 0.07 0.80 
(1,1,3) 0.77 -36.86 0.09 0.94 
(2,1,3) 0.78 -36.13 0.08 0.86 

 
Table 9 shows the results of forecasting water quality parameters. 

AIC, RMSE and VE %, criteria were used at this stage to show the 
capability of each model to forecast the value of data. Results show 
that the selected model for each parameter is quite able to estimate 
the future values of water quality parameters. 
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Fig. 12. Forecasted values of 5 last years for TDS, EC, HCO3
-, SO4

2-, Ca2+, Na+, pH and SAR.  
 

 
5. Conclusions 

 
In this study, nine water quality parameters of Hor Rood River 

were studied at Kakareza station. First the normality of series was 
examined. All parameters showed that they follow a normal 
distribution. Then the ACF and PACF of each series were estimated 
to guess the best model for generating the value of series. Also 
standard time series of all parameters were plotted. Na+, pH and SAR 
show decreasing trend in spite of other elements of water quality 
which show an increasing trend.  

Investigation of observed time series proves that EC, Ca2+, SO4
2- 

and HCO3
- show a significant increasing trend which is a sign for 

water quality deterioration in the region. Before data generation using 
one difference to eliminate the trend, stationary time series were 

prepared to work on. The results of modeling show that ARIMA 
modeling process is suitable in generating and forecasting the 
parameters. 

 

 

 

Table 9. Results of forecasting 5 years of parameters. 
 

Parameter RMSE VE % R2 

TDS 18.87 0.1 0.87 
EC 16.19 0.07 0.49 

HCO3
- 0.09 0.04 0.91 

SO4
2- 0.10 0.61 0.48 

Ca2+ 0.12 0.09 0.66 
Na+ 0.04 0.32 0.9 

pH 2.08 1.45 0.92 

SAR 0.02 0.23 0.7 
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