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 Solving a large sparse set of linear equations is of the problems widely seen in 
every numerical investigation in the entire range of engineering disciplines. 
Employing a finite element approach in solving partial derivative equations, the 
resulting stiffness matrices would contain many zero-valued elements. Moreover, 
storing all these sparse matrices in a computer memory would slower the 
computation process. The objective of this study is to attain insight into Skyline 
solver in order to store the non-zero valued entries of large linear systems and 
enhance the calculations. Initially, the Skyline solver is introduced for symmetric 
or non-symmetric matrices. Accordingly, an implementation of the proposed 
solver is conducted using various grid form sets and therefore, several stiffness 
matrices with different sizes to evaluate the solver’s capability in solving equation 
systems with a variety of dimensions. Comparing the obtained numerical results it 
was concluded that Skyline algorithm could solve the equation systems tens of 
times faster than a regular solver; especially in conducting iterative mathematical 
computations like Saint-Venant Equations.  
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Nomenclature 
 
B  nodal degree of freedom 
DIMMA  number of elements in the global matrix 
DM  dimension of the stiffness matrix 
DMSL  total number of elements in a 1D matrix 
EL  number of elements 
K  stiffness matrix 
NO  number of nodes in an element 
TOTVAL  number of non-zero cells in a matrix 
TOTVALS number of non-zero cells in a symmetric matrix 
X  unknown vector 
ZEVA the number of zero valued cells in the global 

matrix 
 

1. Introduction 
 
Employing the numerical methods like finite difference and finite-

element methods for numerical analysis of a hydraulic phenomenon; 
particularly in its three-dimensional form, can result in solving large 
systems of linear equations like Eq. (1). Regularly, these equation 
systems are symmetric and include many zero-valued entries in their 
equivalent matrix system form. Gauss-Jordan elimination, Atomic 
Triangular matrices, Cholesky-method and Strip-method are the most 
distinguished mathematical approaches to solve these systems of 
linear equations. For example, in the Gauss-Jordan elimination 
method, the determinants and inverse matrices must be calculated 
(Poole 2002). Moreover, the required numerical stability can be 
reached by conducting a partial diagonalization of the respective 
matrix (Golub and Van Loan 1996).  

 

[K][X] = [B]                                                                                          (1) 
 

where, [K] is the coefficients matrix (stiffness matrix in finite-element 
approach), [ X] is the unknown vector, and [B] is the nodal degree of 
freedom.  

The constraints on computer storage requirements and CPU 
prevent using common solvers for intricate problems, like fluid flow 
with thousands of equations to be solved. There are two types of 
solvers, iterative and direct solvers. Below, we will present a concise 
overview of these solvers. 

Iterative methods are found to be capable of solving large linear 
equation systems since they require less storage room and CPU time. 
They are inaccurate solvers, but their converged solutions can be 
close enough to the exact solution. The main process in an iterative 
method is the matrix-vector multiplication as compared to the matrix 
reduction in direct methods. A noteworthy benefit of iterative methods 
is that a given set of equations can be spit up into several subsets of 
equations and calculations can be performed in parallel on an array of 
processors. However, convergence characteristics of iterative 
methods depend on the condition number of the system of linear 
equations, and to find a suitable preconditioner is an essential to 
reach convergence. Normally, in Taylor-Galerkin computations of 
dam-break problems, less than six iterations would be enough to 
achieve convergence (Quecedo and Pastor 2002).  

Nevertheless, solving sparse equation systems through classic 
methods would lead to larger computer storage requirements and 
therefore higher CPU costs. Nevertheless, there are various methods 
for re-ordering these sparse matrices. For example, Chin Shen et al. 
(2002) have proposed a set of parallel preconditioning approaches 
built up upon a multilevel block incomplete factorization method, which 
implements an iterative solver to complete the linear system solving 
process. According to their research, this technique is suitable for 
solving large sparse linear systems on distributed memory parallel 
computers that consist of a collection of independent processors. 
They have also proposed two new algorithms for constructing 
preconditioners based on the theory of block autono mous sets. 
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Moreover, in order to solve the large linear equations of the 
discretized form of shallow water equations, Fang and Sheu (2001) 
have made use of the bi-conjugate gradient stabilized (Bi-CGSTAB) 
and the generalized minimum residual (GMRES) methods, which are 
two Krylov subspace iterative solvers. They have evaluated these 
methods through comparing the obtained numerical results to the 
ones obtained from multi-frontal solver, which is a well-known direct 
solver regularly used in MATLAB software. Based on their 
investigations, the GMRES performed much faster than the direct 
solver.  

The previously mentioned re-ordering methods can be employed 
in direct solvers too. Direct methods are those in which simultaneous 
linear arithmetical equations are solved by successive elimination of 
variables and back replacement. The Gauss elimination method is a 
fixed-step procedure. Furthermore, the frontal and skyline solution 
methods are modifications of Gauss elimination technique, which are 
frequently used direct solvers. These methods are common 
procedures in numerical simulations and especially in the finite-
element analysis when we face a sparse mass matrix in the 
computations. The frontal solution method is faster than nearly all 
direct solvers as it calls for less core space as long as active variables 
can be kept in the core since the method completes the computational 
steps related to creating element matrices and assembling the global 
stiffness matrix in one single step (Irons 1970).  

Other novel procedures include the approaches, which deal with 
only non-zero entries of a stiffness matrix through storing them in a 
new compacted form. Nour-Omid and Taylor (1984) have proposed 
an algorithm for assembly of K matrix. According to their studies, the 
data structure can be extended to be used in conjunction with any 
solution procedures by simply expanding the compacted form into a 
form appropriate for the respective solver. The scheme is similar to 
Skyline solver and results in considerable reduction in the storage 
needs during the assembly process. Alan Mathison has proposed 
another novel technique. In this method, the coefficient matrix must be 
decomposed into two lower and upper triangular matrices. 
Furthermore, the equation system can be solved by performing 
Forward Substitution and Back Substitution methods (Poole 2002). 
While, employing the Cholesky method, a unit valued element must 
be considered for the diagonal entries of the upper triangle of the 
matrix.  

In this research, a one-dimensional dam-break test case is 
numerically examined to evaluate the efficiency of the Skyline solver 
through measuring its run time. The motivation of the investigation 
was to assess the necessary CPU time for different grid forms used to 
discretize the computational domain through a classic finite-element 
method and enhance the calculations. Accordingly, a shock wave 
induced by a dam failure will be numerically modeled and its results 
will be compared to the pre-existing numerical data. 

 
2. Materials and methods 
2.1. Band matrix solver 

 
Among all conventional directs solvers; this method is more 

suitable to solve banded matrices. The matrix, A, of size n×n is called 
a banded matrix if all of its entries except the diagonal ones are zero-
valued elements. The width and size of these diagonal stripes can be 
denoted by k1 and k2, which represent the width of left and right half of 
the diagonal strip, respectively. The global banded matrix can be 
constructed by storing the diagonal entries while having zeros for 
matrix cells except the diagonal ones. For example, the matrix, A(4×4), 

with the width equal to three would be stored as a matrix like
'A  of the 

size 4×3 (Golub and Van Loan 1996). Here, the constant coefficients 
k1 and k2 are equal to one. 
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2.2. Symmetric Band-matrix solver 
 

This solver is similar to the Band Matrix Method, but more useful 
for symmetrical matrices. The following strategy can be used for 
positive definite matrix systems, which are banded and symmetrical. 
(4) and (5) demonstrates the respective arrangement of the re-
ordered matrix. 
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2.3. Skyline method 

 
This method is useful for banded symmetric matrices, which are 

commonly seen in the finite-element analysis with an appropriate 
node numbering from. The scheme stores the non-zero cells of a 
matrix entry at the beginning and end of each column in the second-
line array. However; in the case, the non-zero elements are located 
around the main diagonal, and the global stiffness matrix is created in 
a certain numerical order; an arithmetical logic can be proposed, in 
which the second-line array could be removed. Consequently, one 
can apply a series of simple mathematic rules when solving linear 
equations while keeping the self-determining property of the 
computational process. According to the following example, here the 
stiffness matrix can be stored in a single-dimensional array or in a 
single column vector. To do this, the diagonal entries of the matrix 
must be stored in an array. 
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 '' 1 2 5 8 10 12A 
 (8) 

                                        

where, the elements of matrix 
''A  represent the element values of 

each column up to the diagonal position. 
Since there could be too many elements in each stiffness matrix, 

the assembly and storing steps of these sparse matrices are of the 
most complex steps, which engineers and scientists must take in 
order to discretize the respective governing equations. As a result, in 
most cases the analyst can manipulate the structure of the stiffness 
matrix to a more proper form and have a smooth computational 
process. For example, the banded matrix storage and the Skyline 
technique can be employed in order to minimize the space required 
for non-zero valued elements. Both methods store the non-zero 
cells in a narrow band near the main diagonal of the matrix. 
Accordingly, this can significantly reduce the computer memory 
required to store the matrix entries. The Skyline storage method has 
an efficient functionality for this; however, its way of storing and 
solving is complicated. Using Skyline solver, two one-dimensional 
matrices must be employed while its optimum output is reachable 
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when these matrices are dense enough or in other word have fewer 
zero cells. 

A Skyline solver can be used whenever the elements of the entire 
matrix are placed around the main diagonal based on a mathematical 
logic. The principal goal here is to store the non-zero elements and 
the right-hand side terms of Eq. (1). Moreover, the eliminations must 
be done on the previously mentioned one-dimensional array. Eq. (2) 
depicts the structure of a global stiffness matrix for three-node 
elements. According to this equation, the distance between any two 
consecutive cells of the main diagonal must be equal to the number of 
nodes in each element. Furthermore, for each column of the stiffness 
matrix, there is a simple mathematical relationship between the nodes 
and number of elements in each column, which can be used in the 
Gauss-Jordan solver in order to minimize the required CPU. This 
process would be more effective when the computational domain is 
partitioned into rather small elements, and the stiffness matrix has 
many entries. Eq. (9) depicts the structure of the respective global 
stiffness matrix. 
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Here, the dimension of the matrix can be calculated through a 

simple mathematical calculation using NO and EL parameters as the 
number of nodes in each element and number of elements, 
respectively. The following equations show the relationships between 
the various components of the matrix system. 

 

  1 1DM EL NO   
                                                                     (10) 

 
2DIMMA DM                          (11) 

 

   2* 1TOTVAL EL NODE EL  
            (12) 
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 
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                  (13) 

 
DIMSL TOTVALS DM                      (14) 
 
ZEVA DIMMA TOTVAL                                                                     (15) 

 
where DM is the dimension of the stiffness matrix; DIMMA is the total 
number of elements in the global quadratic matrix. TOTVAL and 
TOTVALS are the number of non-zero valued cells in a regular and 
symmetric matrix formation, respectively. DMSL is the total number of 
elements in a one-dimensional matrix, and ZEVA is the number of 
zero valued cells in the global matrix. 

 
3. Results 
 

Here an incompressible fluid is considered, which is assumed to 
have no viscosity (inviscid fluid) that is homogeneous with a constant 
and uniform density (ρ). Subjected to the characteristics of the flow 
and computational domain, some approximations are imposed to the 
Navier-Stokes system of equations to obtain the efficient equations 
capable of simulating Dam-break shock waves. Accordingly, the Saint-
Venant Equations can be expressed as follows: 

 
                    (16)  
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where A is the cross-sectional area; t denotes the time (s); h is the 
water elevation (m); g is the gravity acceleration, and x is the flow 
direction. Sf and S0 correspond to friction and bottom slopes, 
respectively.  

In this study, a homogeneous case is considered. Consequently, 
the source terms are neglected (S=0). A standard finite-element 
approach was used in order to have an approximate solution to the 
incompressible and shock-dominated flow problem. The numerical 
method employs the weight functions and the new parameter, α, to 
solve the system in an implicit approach. The numerical method 
approximately solves the governing equations in an iterative way so 
that the results obtained in the step s would be close enough to the 
results obtained in the computational step s+1. The written computer 
code uses the following equations to solve the momentum and 
continuity equations in an implicit approach (Karimi 2012). 
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       (22) 
 

  
where [M1] is the coefficient matrix of time-dependent terms; [K] is the 
coefficient matrix of U, and [F] is the Right Hand Side (RHS) vector. In 
these set of equations, the parameter, α ,is varied within the range 

[0,1]. Accordingly, one may define 𝛼 = 0, 𝛼 = 1.2, 𝛼 = 3.2 while they 
act as a Backward Difference, Crank–Nicolson, Galerkin or Forward 
Difference schemes, respectively (Reddy 2006). 

In order to assess the effectiveness of the proposed numerical 
scheme, results obtained from the previously mentioned mathematical 
approach is put side by side a finite difference model of a one-
dimensional dam-break problem. Tseng and Chu (2000) have 
employed a predictor–corrector Total Variation Diminishing (TVD) 
scheme for the computation of unsteady one-dimensional dam-break 
flows. The presumption of an immediate and complete breach is 
chosen to simplify the simulation, while we are applying certain 
arithmetical methods for analyzing the Skyline’s efficiency in solving 
large linear equation systems. Moreover, the experiment’s 
presumptions illustrate a reinforced concrete arch dam failure 
(Seyedashraf 2012).  

The test case exhibits the development of the flow in the 
computational domain from time t = 0 s to t = 60 s. The computational 
domain is a straight, rectangular channel, and the dam is located in 
the middle of a horizontal channel whose Manning roughness 
coefficient is assumed zero. Originally, the water body is motionless 
with uneven depths on both sides of the hypothetical barrier, 10m in 
the upstream and 5m in the downstream region of the dam. The 
obtained result is depicted in Fig. 1 and compared to its respective 
finite difference solution. 

 

 

Fig. 1. Water depths at t=60(s) in a 1D dam-break problem. 
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Table 1. Global matrix characteristics for different element types used to discretize the computational domain. 
Number of nodes on each element 3 4 5 6 7 8 

Number of elements 100 100 100 100 100 100 

Matrix dimension 201 301 401 501 601 701 

Number of cells in the global matrix 40401 90601 160801 251001 361201 491401 

Number of non-zero valued cells 801 1501 2401 3501 4801 6301 

Skyline’s matrix dimension 1002 1802 2802 4002 5402 7002 

Number of zero valued cells 39600 89100 158400 247500 256400 485100 

 
 
3. Discussion 
 

As observed in table (1), extra zero-valued entries are produced in 
the global stiffness matrix, when the number of nodes in each element 
is increasing. To conduct the numerical computations, a QBasic code 
was developed. The computer code was implemented on a Pentium 
4, 2.40 GHz personal computer. Tables (2) and (3) depict the 
numerical results obtained from different types of elements employed 
to discretize the computational domain while two distinctive solvers 
were used to solve the linear equation system, which are Gauss-
Jordan and Skyline, respectively.  

 
Table 2. Analogy of the results obtained from a finite element 

simulation of dam-break flow using different elements. The linear 
equations are solved by a Skyline technique. 

Node Δx(m) Δt (s) Time 

3 50 1 0 min , 7 sec 

3 40 1 0 min , 8 sec 

3 30 1 0 min , 9 sec 

3 20 0.5 0 min , 26 sec 

3 10 0.25 1 min , 36 sec 

3 2.5 0.1 14 min , 57 sec 

5 100 1 0 min , 10 sec 

5 50 0.5 0 min , 33 sec 

5 40 0.5 0 min , 40 sec 

5 30 0.4 1 min , 3 sec 

5 20 0.2 2 min , 58 sec 

5 10 0.1 11 min , 15 sec 

7 100 0.5 0 min , 33 sec 

7 40 0.25 2 min , 22 sec 

7 30 0.25 3 min , 4 sec 

7 25 0.1 9 min , 9 sec 

7 60 0.5 0 min , 50 sec 

7 70 0.5 0 min , 43 sec 

7 50 0.4 1 min , 13 sec 

7 50 0.2 2 min , 25 sec 

4 50 1 0 min , 12 sec 

4 40 0.5 0 min , 27 sec 

4 30 0.5 0 min , 33 sec 

4 20 0.25 1 min , 29 sec 

4 10 0.2 3 min , 27 sec 

4 5 0.1 13 min , 20 sec 

6 100 1 0 min , 16 sec 

6 50 0.4 0 min , 54 sec 

6 40 0.4 1 min , 4 sec 

6 30 0.2 2 min , 45 sec 

6 20 0.2 4 min , 0 sec 

6 10 0.1 15 min , 57 sec 

8 100 0.5 0 min , 41 sec 

8 50 0.25 2 min , 32 sec 

8 40 0.25 3 min , 7 sec 

8 30 0.2 4 min , 59 sec 

 
 

 
 

According to these tables, the Skyline technique has enhanced the 
solving process, which has led to a 10-times faster computational 
process.  

 
Table 3. Analogy of the results obtained from a finite element 

simulation of a dam-break flow using various elements. The linear 
equations are solved by a Gauss-Jordan technique. 

Node Δx(m) Δt (s) Time 

3 50 1 6 min , 4 sec 

3 40 1 11 min , 25 sec 

3 30 1 25 min , 28 sec 

3 20 0.5 >60 min 

3 10 0.25 >60 min 

3 2.5 0.1 >60 min 

5 100 1 6 min , 6 sec 

5 50 0.5 >60 min 

5 40 0.5 >60 min 

5 30 0.4 >60 min 

5 20 0.2 >60 min 

5 10 0.1 >60 min 

7 100 0.5 40 min , 30 sec 

7 40 0.25 >60 min 

7 30 0.25 >60 min 

7 25 0.1 >60 min 

7 60 0.5 >60 min 

7 70 0.5 >60 min 

7 50 0.4 >60 min 

7 50 0.2 >60 min 

4 50 1 19 min , 25 sec 

4 40 0.5 >60 min 

4 30 0.5 >60 min 

4 20 0.25 >60 min 

4 10 0.2 >60 min 

4 5 0.1 >60 min 

6 100 1 11 min , 39 sec 

6 50 0.4 >60 min 

6 40 0.4 >60 min 

6 30 0.2 >60 min 

6 20 0.2 >60 min 

6 10 0.1 >60 min 

8 100 0.5 >60 min 

8 50 0.25 >60 min 

8 40 0.25 >60 min 

8 30 0.2 >60 min 
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4. Conclusions 
 
The Skyline method was discussed in this research and was 

employed to solve the spare linear equation systems for numerical 
simulation of a shock wave propagation emanating from a one-
dimensional dam-break problem. Skyline is a novel approach to deal 
with the problems associated with sparse matrices in numerical 
computations. The technique only deals with the non-zero valued cells 
of the global stiffness matrix, and stores them in a one-dimensional 
matrix, which was later solved using an elimination method. The 

numerical results obtained from the proposed procedure were 
evaluated through a test case and compared to the ones acquired 
from a regular Gauss-Jordan solver. It has been shown that Skyline is 
an appropriate scheme for reducing the CPU time required for 
processing instructions of a computer, and therefore, computer 
storage costs. Moreover, using this solver, the obtainable numerical 
data would be the same as the ones acquired from well-known and 
regularly used solvers. Consequently, employing this method is 
recommended for problems that lead to large linear equation systems. 
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