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 Roll waves appear as successive transitions from super- to sub-critical flows by 
passing through moving hydraulic jumps. Such discontinuous periodic waves 
propagate in a staircase pattern at constant wave celerity. On the basis of nonlinear 
shallow water (NLSW) equations, a finite volume model is presented to study the 
evolution of roll waves in inclined steep channels. The numerical model exploits the 
total variation diminishing version of weighted average flux (TVD-WAF) explicit 
method to solve the homogeneous NLSW equations. An implicit trapezoidal time 
integration operator is implemented for the treatment of source term which includes 
contributions from both the channel slope and frictional resistance. The simulated 
surface profile and flow velocity are in well agreement with available analytical 
solution for roll waves. The time evolution of wave amplitude under different 
undisturbed Froude numbers are investigated numerically and compared with 
theoretical predictions. Temporal decay of initial disturbance is discussed in which 
case roll waves no longer form. The observed agreement implies the efficiency and 
accuracy of the present scheme for roll wave modeling. 
                                                                        © 2016 Razi University-All rights reserved. 
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1. Introduction 

 
Considering a steady uniform flow down an inclined steep channel 

with bed friction, once the Froude number exceeds a definite critical 
value, the flow reveals some sort of hydrodynamic unstability and the 
disturbances on the free surface, if exist, may eventually grow forming 
a series of successive hydraulic bores connected by smooth profiles of 
gradually varied flow. Such discontinuous periodic waves propagate in 
a staircase pattern at constant wave celerity and are known as roll 
waves.  

From practical point of view, it is important to consider the role of 
roll waves in the design of channels, since these water carrying 
structures may be overtopped by formation of roll waves (Montes. 
1998). Dressler (1949) was the first who mathematically explained the 
occurrence of periodic roll waves in an open channel of constant slope 
and obtained a quasi-steady solution for roll waves. He assumed a 
uniformly moving frame of reference to formulate traveling waves. The 
critical value of Froude number to onset instabilities was found to be 
F0=2 based on mathematical analysis of linearized theory where a small 
perturbation is being imposed on a steady uniform state (Whitham. 
1974; Que and Xu. 2006). This threshold condition for the formation of 
roll waves has been also confirmed by experiments (Brock. 1967). 

In addition to man-made canals such as draining systems and dam 
spillways, roll waves have also been observed in natural water courses 
such as ice channels (Carver, Sear and Valentine. 1999) and lakes 
(Fer, Lemmin and Thorpe. 2003). Balmforth and Mandre (2004) 
reported disturbances in a variety of physical situations that behaves, 
in some aspects, similar to roll waves in open channel flows. These 
include perturbations in multi-phase fluid, mudflow, granular layers and 
flow down collapsible tubes and elastic conduits. It is worth mentioning 
that the phenomenon of roll wave is precisely analogous to the stop-
start waves encountered in freeway models of traffic theory (Kühne. 
1984). 

The nonlinear shallow water (NLSW) equations have been broadly 
accepted for modeling long wave evolution in open channels as well as 
coastal areas (Mahdavi and Talebbeydokhti. 2009, 2011; Mahdavi et 
al. 2012). The hyperbolic nature of this system of partial differential 

equations admits discontinuous solutions (e.g., hydraulic jump, bore, 
breaking wave and roll wave) even when the initial conditions are 
spatially smooth. Based on the one dimensional NLSW, Zanuttigh and 
Lamberti (2002) found satisfactory results in reproducing the Brock’s 
experimental roll waves in a laboratory flume. The same authors further 
studied the stability of viscoplastic fluid in uniform flow, proving that 
debris flows become unstable even for F0<1 (Zanuttigh and Lamberti. 
2004).    Di Cristo et al. (2008) established a formula on the minimum 
channel length required for roll wave development. Their results were 
found reliable when compared to available experimental data, 
regardless of the channel slope. Que and Xu (2006) developed a high 
resolution scheme based on the gas-kinetic Bhatnagar–Gross–Krook 
(BGK) model to study roll-waves down an inclined open channel.  

In the present study, the generation and propagation of roll waves 
are numerically investigated in the framework of an initial value problem 
for NLSW equations. The TVD-WAF scheme is considered as an 
approximate Riemann solver to provide the model with shock capturing 
property in presence of discontinuities across the front of roll waves and 
to allow the formation of smooth segments of gradually varied flow 
linking each two consecutive bore faces. The accuracy of the scheme 
is verified through comparisons with the available analytical solution 
and with the numerical results obtained by the BGK kinetic scheme of 
Que and Xu (2006). 

 
 2. Materials and methods 
 Governing equations 

Referring to the definition sketch (Fig. 1), the generation and 
evolution of roll waves are considered here. The relevant process can 
be appropriately described by the non-linear shallow water equations 
written in the conservative form as: 
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The conserved variables U, the flux F, and the source term S are 
defined respectively by: 
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In the above equations, t denotes time, x is the distance along the 
channel, h (x, t) is the water depth, u (x, t) is the depth-averaged velocity 
along x-direction, Cf is the bed roughness coefficient, So is the bottom 
slope and g is the gravitational acceleration. 

In the context of numerical schemes, it is usual to approximate the 
spatial derivative of non-linear flux F in Eq. (1) at xi (the center of cell i) 
by the conservative difference as: 
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where Δx is the spatial cell size and Fi+1/2 and Fi–1/2 are the inter-cell 
numerical fluxes that will be explained in the next paragraphs. 

 
Fig. 1. Definition sketch for propagation of roll waves. 

 

Evaluation of numerical flux 

To precisely handle the shock-like wave front of roll waves, the 
inter-cell numerical fluxes are computed by the weighted average flux 
(WAF) shock capturing method. A limiter function enforces the total 
variation diminishing (TVD) constraint on the scheme and, thereby, 
adding sufficient dissipation to the scheme to ensure the monotonicity 
near large gradients of the solution. The TVD-WAF scheme preserves 
second order accuracy in spatial and temporal coordinates and is 
oscillation-free across discontinuities. The numerical flux may be 
written as (Toro. 2001): 
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where N denotes the number of waves in the solution of Riemann 

problem, ( ) ( 1) ( )
1/ 2 1/ 2 1/ 2

k k k
i i i


    F F F  is the flux jump across wave k 

with fluxes defined by (1)

1/2 ( )i L F F U , (2) *

1/ 2 ( )i  F F U and

(3)

1/2 ( )i R F F U , 
kc is the Courant number for wave k and 

( )

1/ 2

k

i   

is the limiter function. Some suitable choices for limiter function are 
reported by Toro (2001). The SUPERBEE limiter is preferred for the 
present applications. It is given by: 
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where 
( )kr  is the ratio of the upwind change to the local change in 

flow depth for which the details can be found in Toro(2001). In (4), the 

numerical flux (2) *

1/ 2 ( )i  F F U refers to the Harten-Lax-van Leer 

(HLL) approximate Riemann solver. Based on the HLL approach, the 
Riemann problem with data UL and UR is characterized by three 
constant states separated by two waves. The numerical flux in the 
intermediate region of the wave structure can be determined as follows: 
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where SL and SR represent the wave speed estimates on the left and 
right sides of the cell interface, respectively. Several options are 
available for these wave speeds. The wave speed expressions derived 
by Toro (1992) is implemented in the present model: 

* *max( , )R R RS u gh u gh    

* *min( , )L L LS u gh u gh    (7) 

In above expressions h*and u*denote, respectively, the flow depth and 
flow velocity in the intermediate region of the wave structure. According 
to the two-rarefaction approach, these flow variables can be evaluated 
by the following closed-form solutions:  
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Treatment of source term 
 

A numerical procedure for dealing with the homogeneous NLSW 
equations was explained in foregoing section. In presence of source 
term, the TVD-WAF scheme can be applied unchanged, if the source 
term is treated by additional integration steps. To this end, a three step 
splitting scheme is implemented that relies on successive solution of 
following system of initial value sub-problems. 
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where superscript n denotes the current time level, Δt is the time step 
size and Δt´=Δt/2. In present work, the source term parts are treated by 
the trapezoidal time integration method. This implicit operator is 
second-order accurate and can be expressed for the first sub-problem 
in Eq. (9) as: 
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where I denotes the identity matrix and ΔUi = Ui
(1)–Ui

n is the temporal 
jump in conserved variables. The second term of the right-hand side of 
Eq. (10) is the Jacobian matrix of the source term. The first intermediate 
value U(1) can be calculated from Eq. (10). Taking U(2) as the initial 
condition, the TVD-WAF scheme is then implemented in an explicit 

conservative scheme to obtain the second intermediate value (2)
U as: 

(2) (1)
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The above conservative formula results from integrating the 
homogeneous NLSW equations over a suitable control volume in the x-
t plane. Finally, applying the source term operator to U(2) will give the 
conserved variables at the new time level, n+1. Because the TVD-WAF 
is an explicit scheme, the magnitude of time interval Δt is dynamically 
adjusted according to the Courant- Friedrichs-Lewy (CFL) criterion, 
defined as:  
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with 
nC  being the CFL number ( 0 1nC  ). 

Initial and boundary conditions  

In order to constitute a mathematically well-posed problem, it is 
necessary to prescribe the initial and boundary conditions that are 
consistent with the true behavior of the physical phenomenon under 
consideration. To specify the initial conditions for modeling roll waves, 
the approach proposed by Que and Xu (2006) is followed which 
provides a simple and robust procedure to model the generation and 
subsequent evolution of roll waves. According to their formulation, the 
initial sinusoidal disturbance and corresponding initial flow velocity are 
respectively designated by: 

 0( ,0) 1 sin( )wh x h k x                                                     

0( ,0) sin( )p w pu x u r k x     
(13) 

In the above equations, ε is an amplification factor accounting for 
the amplitude of the initial disturbance which was suggested to be 
ε=0.005 in the original paper, kw is the 2π-wave number, h0 and u0 are 
the water depth and flow velocity of the undisturbed initial flow, 
respectively. θp is the phase lag between the initial water depth and 
associated flow velocity and rp represents a function of angular velocity, 
wave number and initial flow velocity for which an expression was 
introduced by Que and Xu (2006). The existence of initial uniform flow 
down a sloping channel requires a situation in which the gravitational 
and frictional forces approach equilibrium such that: 

2

0o fS C F  (14) 

where F0= u0/(gh0)
1/2 is the Froude number of initial undisturbed flow and 

the variables with subscript 0 refer to those associated with initial 
uniform flow. The adoption of periodic boundary condition at either ends 
of the computational domain enables efficient representation of the 
periodic properties of roll waves. This type of boundary condition 
simultaneously equates the conserved variables at two boundaries of 
the model.  

3. Results and discussion  
 

The numerical values of the physical parameters adopted herein 
mostly follow those of Que and Xu (2006). Fig. 2 shows the snapshots 
of depth profiles for a uniform flow (q0=h0u0=0.001 m2 s-1, F0 =2.5) 
primarily disturbed by imposing a sinusoidal perturbation (kw=10π and 
ε=0.005) over its free surface.  The flow domain has a length of 2 m 
(0<x<2m) and is discretized by 1000 computational cells (Δx=0.002 m). 
The numerical stability of the roll wave simulation is guaranteed by 
setting Cn = 0.65. The bed friction is included in the computation by a 
roughness coefficient of Cf=0.006 and the channel slope is So=0.0375 
as determined by Eq. (14). Obviously, the amplitude of initial 
disturbance grows up with time until a permanent form wave is 
established around t=20s. At this stage, the wave train experiences 
successive transitions from super- to sub-critical flows through moving 
hydraulic jumps. This situation is shown in Fig. 3. The moving reference 

Froude number is defined as  ( ) /mrF c u gh  with c being 

the constant wave celerity which is evaluated as -10.55msc  in 

this case. This definition is equivalent to an observer moving with roll 
wave for which the wave appears to be stationary.  In this manner, the 
problem may be simplified to steady-flow formation of hydraulic jumps. 
It can be seen that the difference between the maximum Fmr and 
minimum Fmr increases by increasing F0 (Fig. 4). These maximum and 
minimum Froude numbers correspond to conjugate depths associated 
with moving hydraulic jumps. An increase of F0 obviously leads to 
greater maximum Fmr which in turn increases the specific force before 
jump. Therefore, the specific force after the jump should also grow to 
maintain the balance between the specific forces acting on either sides 
of the jump (taking into account the bottom friction force). The threshold 

Froude number F0 = 2 implies the dominance of critical flow regime 
throughout the domain which is indicated by Fmr = 1 in Fig. 4. 

 

 
 

Fig. 2. Snapshots of depth profiles representing the generation 
and evaluation of roll waves at different times. The channel has a 

length of 2m; the steady state flow is designated by: q0 = 0.001 m2S-1, 
F0 = 2.5, Cf = 0.006; and the initial disturbance takes these parameter 

values: kw = 10𝜋 and 𝜀 = 0.005 (The axes are in meter). 
 

In Fig. 5, depth and velocity profiles of emerged roll waves are 
checked against the analytical solution of Dressler (1949). The 
agreement is quite satisfactory in terms of predicting the locations of 
bore faces and simulating the smooth connecting profiles. The time 
history of flow variables at the middle of the channel i.e., x=1m are 
depicted in Fig. 6 along with the results obtained by a high resolution 
BGK kinetic scheme developed by Que and Xu (2006). The results of 
these two models reveal a similar pattern for both amplitude growth and 
temporal variation of flow velocity at this location. 

Lukáčová-Medviďová and Teschke (2006), performing a 
comparison study of various numerical shallow water models, noted 
that the CPU-efficiency needs to be considered relatively since it 
depends on the optimality and robustness of a code. Therefore, 
comparisons are also made between simulation run times of the two 
models. In the cases studied, it was found that the CPU time consumed 
by the TVD-WAF scheme is only about 30−33 % of that needed by the 
BGK scheme, implying the efficiency of the present model with respect 
to its CPU performance. 

The natural logarithm of maximum wave amplitude as a function of 
time under several Froude numbers ranging from F0=1.5 to F0=3.7 is 
presented in Fig. 7. Also depicted in this figure are the linear theory 
predictions (Que and Xu, 2006). At the first stages of wave evolution, 
the amplitude growth rate is in agreement with theoretical results 
obtained by the linear theory, but as time continues, the wave amplitude 
is no longer small and the wave form undergoes a change towards 
successive hydraulic bores leading to appearance of nonlinear effects 
and thus divergence from linear theory. However, the validity range of 
linear theory tends to extend when the Froude number of initial flow is 
reduced.  
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Fig. 3. Transition from super- to sub-critical flow regimes in roll 
waves. The waves propagate toward right. 

Fig. 4. The maximum and minimum values of moving reference 
Froude number versus initial Froude number. 

 
 
 

Fig. 8, shows the variation of natural logarithm of wave amplitude 
versus 2π-wave number, kw, for different values of Froude number. For 
a given Froude number, the wave amplitude descends in response to 
an increase in kw. Conversely, the wave amplitude ascends as the 
Froude number increases for a given value of kw. 

It was remarked earlier that the linearly unstable conditions of flow 
are dominated as the Froude number exceeds the limit value F0=2. In 
conformance with this fact, the numerical results demonstrate a 

relatively time invariant wave amplitude for F0=2 while a substantial 
decay in wave amplitude is apparent when F0<2 (Fig. 7). To further 
illustrate the latter case, the time evolution of free surface is considered 
in Fig. 9 for F0=1.5. Under such a condition, the amplitude of initial 
disturbance would theoretically approach zero if the time goes to 
infinity. The simulated free surface profiles in Fig. 9 reveal this pattern 
of amplitude decay and the flow practically recovers its undisturbed 
steady state at the end of simulation time. 

 
(a)

 

(b)

 

Fig. 5. Comparison between simulated roll waves and analytical solution of Dressler (1949) for a: flow depth and b: flow velocity. 

(a)

 

(b)

 

Fig. 6. Time histories of flow variables at the middle of channel ( 1mx  ) for a: flow depth and b: flow velocity.  
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Fig. 7. Time evolution of the natural logarithm of wave amplitude 

under different Froude numbers and comparison with linear theory 
(Que and Xu, 2006). (Solid line: Present study; Dash-doted line: linear 

theory). 
 

 
 

 

Fig. 8. Natural logarithm of wave amplitude as affected by changes in 
for different Froude numbers. 

 

  

 

Fig. 9. Temporal decay of initial disturbance for F0 = 1.5. 

4. Conclusions  

The TVD–WAF scheme has been combined with a three step 
splitting scheme to numerically solve the conservative form of one 
dimensional nonlinear shallow water equations. The model was 
adopted to investigate the generation and evolution of roll waves down 
an inclined steep channel. It is accomplished by introducing appropriate 
initial and boundary conditions in the framework of an initial value 
problem. The numerical results confirm the capabilities of model as a 
robust tool to eliminate the numerical instabilities due to small water 
depths usually encountered in roll wave simulation. Moreover, the 
present model requires a reduced amount of CPU time when compared 
to that of a high resolution shock capturing scheme. The amplitude 
growth of emerged roll waves for F0 >2 together with amplitude decay 
of initial disturbance for F0 <2 are simulated by the scheme and 
compared satisfactorily with a theoretical approach.  The present 
numerical model requires only modest computational effort and, 
nevertheless, has the ability to handle free surface flows in cases where 
shocks and smooth profiles are to be considered simultaneously in the 
computational domain.  
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