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 In this paper an attempt has been made to study the effects of floodplains width and 
discharges on flow field in prismatic compound channels. A three-dimensional Computational 
Fluid Dynamic (CFD) model is used to predict the velocity distribution, secondary flow 
circulation and boundary shear stress in prismatic compound channels with various 

floodplains widths. The ANSYS-CFX software and three different turbulence models, ,  
Explicit Algebraic Reynolds Stress Models (EARSM) and Eddy Viscosity Transport, are used 
to solve Reynolds Averaged Navier-Stokes equations. The results of the numerical modeling 
were then compared with experimental data on prismatic compound channels with 100 mm, 
200 mm, 300 mm, and 400 mm floodplain widths. The study shows that all turbulence models 
are capable to predict the depth-averaged velocity in prismatic compound channels, fairly 
well. However, to compare with the velocity distribution, discrepancy between experimental 

data and boundary shear stress calculated by numerical modeling are high. Also only  
EARSM model is able to predict secondary flow circulations. 
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1. Introduction 
 

The prediction of the flow characteristics in compound channels 

with prismatic floodplains is a challenging task for engineers because 

of the three-dimensional nature of the flow. In compound channels flow 

in the main channel is faster than floodplains. This difference creates 

shear layer at the interface between the main channel and floodplains, 

leading to the generation of the vortices with vertical axes, as well as 

the secondary flow circulations with longitudinal axes, as shown by 

Sellin (1964), Tominaga and Nezu (1991), Ikeda (1999), Bousmar 

(2002), Rezaei (2006) and Rezaei and Knight (2011). Because of the 

presence of this shear layer and creation of momentum exchange 

between the main channel and floodplains, the conveyance capacity of 

the main channel decrease, while on the floodplains significantly 

increases. Wormleaton (1996) stated that the effects of this shear layer 

extend across the floodplain width and decreases to zero towards the 

floodplain wall. Myers (1978) also discovered that the effects of the 

shear layer were great at lower overbank flow depths and decrease as 

the flow depth increases. 

There are two kinds of vortices that are generated at the interface 

between the main channel and the floodplain; one is the horizontal 

vortex due to shear layer of the stream wise flow, first observed by Sellin 

(1964), and the other is the secondary flow in the cross section due to 

anisotropy of turbulence, also called secondary flow of 2nd kind (cf. 

Nezu and Nakagawa ,1993), as shown in Fig. 1. These effects have 

been observed experimentally by Shiono and Knight (1991) and 

Tominaga and Nezu (1991) using Laser-Doppler Anemometer (LDA). 

Also those secondary flow cells numerically investigated by Naot et al 

(1993) using a non-linear  turbulence model and by Cokljat and 

Younis (1995), using Reynolds Stress Transport model. They have 

found a significant influence of secondary flows into momentum transfer 

and boundary shear stress. Pezzinga (1994) used a nonlinear  

turbulence model to predict the uniform flow in a compound channel. 

He found that the proposed model is able to predict the secondary 

current, created by the anisotropy of normal turbulent stress. Cokljat 

(1993) used a Reynolds Stress Transport model and non-lineared  

turbulence model to predict flow in open channel. He found out that the 

Reynolds Stress Transport (RST) model is able to predict the 

secondary flow cells but in contrast the non-linear  model failed to 

reproduce this result. Both models predicted equally well the shear 

stress. Flow field in trapezoidal open channel was numerically 

investigated by Wright et al. (2004) using  and various Reynolds 

stress models. They revealed that while all the models generally gave 

similar predictions for many features of the flow, there was a clear 

difference in the secondary flow characteristics. The  model failed 

to show any recirculation and the Reynolds stress models showed 

some recirculation in varying degrees.  

Kang and Choi (2005) used a Reynolds stress model to simulate 

flow field in compound channels with vegetation on the floodplains. 

They show that by increasing vegetation density on the floodplains the 

point maximum stream wise means velocity moves to the main channel 

also bed shear stress on the floodplains decrease while it increases in 

the main channel. Jing et al. (2009) modeled flow in a meandering 

compound channel using the Reynolds stress model (RSM). They 

reviled that RSM can successfully model the velocity distribution and 

boundary shear stress in proposed flume.   

Beaman (2010) used Large Eddy Simulation (LES) to model flow field 

in in-bank and over-bank channels. He showed that the LES model can 

accurately predict the flow characteristics, specially the distribution of 

secondary circulations in inbank and for over-bank channels at varying 

depth and width ratios. The main aim of the present work is to 

investigate whether or not the ANSYS-CFX software is able to predict 

the effects of flow depth and floodplain width on flow field in prismatic 

compound channels. Three turbulence models including , Eddy 

Viscosity Transport Equation (EDDY) and Explicit Algebraic Reynolds 

Stress Model (EARSM) were chosen to model the velocity distribution, 

depth-averaged velocity and boundary shear stress distributions. 
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Fig. 1. Flow structure in a compound channel (Shiono and Knight. 1991). 

2. Materials and methods 
 

 Experiments were carried out by Rezaei (2006), using an 18 m 

flume at the University of Birmingham, Department of Civil Engineering. 

A compound channel of simple rectangular cross-section was selected 

and all experiments were performed in a straight flume, almost 1200 

mm in width, 400 mm in depth and with the average bottom slope of S0 

= 2.003×10-3. PVC material, were used to construct rigid and smooth 

boundaries both for the main channel (with 398 mm width and 50 mm 

depth), and also for the floodplains of 400 mm wide (Rezaei. 2006). 

However, for experiments in prismatic compound channels, the main 

channel and floodplains were isolated using L-shaped aluminum 

sections to make different floodplain widths, 100 mm, 200 mm, 300 mm 

and 400 mm (see Fig. 2). 

A series of three adjustable tailgates, at the downstream flume end, 

controlled uniform flow in compound channel. Overbank flow in 

prismatic compound channel tests are denoted by OPC, the first three 

numbers refer to the floodplain width and two code numbers denoted 

the flow discharge (Rezaei. 2006).  

 

 
 

Fig. 2. Typical cross-section of prismatic compound channels with different floodplain widths. 
 
 
2.1. Depth-averaged velocity measurement 

 

The depth-averaged velocity distribution in a cross-section was 

measured at one section (14 m from the channel inlet) using a 13 mm 

diameter Novar Nixon miniature propeller current meter. Point depth-

averaged velocity measurements were made laterally each 25 mm at a 

depth of 0.4H from the bed in the main channel and 0.4(H - h) on the 

floodplains (Rezaei. 2006). 

 

2.2. Boundary shear stress measurement 

 

Local boundary shear stress measurements were made using a 

Preston tube of 4.77mm outer diameter. These measurements were 

performed at the same sections where velocity measurements were 

taken. Local boundary shear stress was measured around the wetted 

channel perimeter at 10 mm vertical intervals on the walls and 25 mm 

transverse intervals on the bed. 

3. Governing equations 

The conservation of mass and momentum can express the flow 

motion. The equation for mass is called continuity equation and 

expressed as follows: 
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in which, is flow density and Uj is time-averaged components of 
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The equation of motion is an expression of the second low of Newton 

and can be explained in the Reynolds-averaged Navier-Stokes 

equation, 
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where P is pressure,  is the molecular stress tensor (including both 

normal and shear components of the stress), jiuu ''  is called 

‘turbulent’ or ‘Reynolds’ stresses and can be evaluated using 

Boussinesq Eddy Viscosity turbulence model. 
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(4) 

in which t is the turbulence viscosity, k is the turbulence kinetic energy, 

and ij is the Kronecker delta. 

3.1. The   model 

The standard  is classified as a two-equation model since it 

used two transport equations to describe turbulence (Launder and 

Spalding, 1974). These two transport equation are as follows: 

Turbulent kinetic energy equation:  
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Turbulent kinetic energy dissipation rate equation: 
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where  k  is the turbulence kinetic energy and is defined as the variance 

of the fluctuations in velocity,  is the turbulence eddy dissipation (the 

rate at which the velocity fluctuations dissipate), Cs1=1.44, Cs2=1.92, 

k=1.00, and =1.30 are turbulence constants. Pk is the turbulence 

production due to viscous forces, which is modeled using:  
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For incompressible flow,(
𝜕𝑈𝑘

𝜕𝑥𝑘
⁄ ) is small and the second term on the 

right side of Equation (7) does not contribute significantly to the 

turbulence production.  

3.2. The Eddy Viscosity Transport model 

A very simple one-equation model has been developed by Menter 

(1997). It is derived directly from the    model and is therefore named 

the (1E model.  
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where 𝑣̃ is the kinematic eddy viscosity, 𝑣𝑡̃  is the turbulent kinematic 

eddy viscosity and C1, C2, and  are model constants. The model 

contains a destruction term, which accounts for the structure of 

turbulence and is based on the Von Karman length scale: 
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in which S is the shear strain rate tensor. The eddy viscosity is 

computed from: 
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3.3. Explicit Algebraic Reynolds Stress model  

 

Explicit Algebraic Reynolds Stress Models (EARSM) represents an 

extension of the standard two-equation models. They are developed 

from the Reynolds stress transport equations and give a nonlinear 

relation between the Reynolds stresses and the mean strain-rate and 

vortices tensors. Because of the higher order terms, many flow 

characteristics are contained within the model without the need of 

solving transport equations. The implementation is based on the Explicit 

Algebraic Reynolds Stress model of Wallin (2000) and Wallin and 

Johansson (2000). The Reynolds stresses are computed from the 

anisotropy tensor according to its definition: 
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where the anisotropy tensor aij is searched as a solution of the following 

implicit algebraic matrix equation: 
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in which the  coefficients may be function of the five independent 

invariants of S and . 
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The coefficients Ai in this matrix equation depend on the Ci coefficients 

of the pressure-strain term in the underlying Reynolds stress transport 

model. Their values are selected here as A1=1.245, A2=0, A3=1.80, and 

A4=2.25. S=Sij and =ij denote the non-dimensional strain-rate and 

vortices tensors, respectively. They are defined as: 
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where the time-scale tt is given by: 
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3.4. Introducing ANSYS-CFX 

 

 The Computation Fluid Dynamic (CFD) is a capable computer-

based tool for simulating the behavior of systems involving flow field, 

heat transfer and other physical processes. It works by numerically 

solving the Reynolds Averaged Navier-Stokes equations over a region 

of interest, with specified boundary conditions. The solution is advanced 

through space and time to obtain a numerical description of the flow 

field. The ANSYS-CFX software is a commercial CFD code; it uses the 

finite volume approach to solve the Reynolds Averaged Navier-Stokes 

equations. 

The advantage of using ANSYS-CFX to other codes is that it offers 

multiple validated solutions as well as powerful algorithms and discrete 

techniques, and is also flexible in implantation of boundary condition via  

user defined FORTRAN subroutines (Morvan et al., 2001; Bonakdari et 

al., 2011). 

 

4. Simulation of flow field  

 

The height and width of the numerical modeling domain were 

exactly the same as experimental flume used by Rezaei (2006). Also, 

an important task was to decide which solver to use. By considering the 

running time of software and uniform flow condition, the Rigid Lid 

approach was chosen, which means that the free surface would be 

fixed at a certain depth by adopting a top boundary with no friction. 

 

4.1. Mesh gridding 

 

In numerical modeling an optimal mesh refinement was pursued, 

with the aim of optimal computational costs besides maintaining 

accuracy. Numerical simulations must have a sufficiently fine mesh to 

resolve the flow field near the main channel and floodplain beds and 

walls. To study the effect of mesh size on flow modeling, three sets of 

course, medium and fine mesh size for prismatic compound channel 

with 400 mm floodplain widths were chosen. The mesh sizes were 

chosen in such a way that the average refinement ratio was above the 

recommended minimum value of 1.3 (see Celik et al., 2008). Using  

turbulence model and discharge of 40 l/s, the depth-averaged velocity 

was numerically modeled (see Fig. 3). Fig. 3 indicated that by 

decreasing cells size accuracy of numerical modeling increase. Also 

the dispersion diagrams for numerical and experimental data together 

with an ideal line function of y=x are presented in Figs. 4. As seen in 

figures by increasing the number of nodes, the points get close to ideal 

line. It should be noted that the mesh spacing in fine case was chosen 

in such a way that the dimensionless distance to the wall, y+(=yu*/v), 

was into the range 30<y+<500. 

 

 

Fig. 3. A comparison between experimental and numerical modeling of depth-averaged velocity for two mesh sizes 
and discharge of 40 l/s. 

 

  

(a) Corse mesh (b) Fine mesh 

Fig. 4. Dispersion diagram of velocity for mesh size independency analysis. 

The ICEM software is used to get a good grid in numerical model. 

Since higher accuracy is needed, grids near the water surface, the beds 

and the interfaces between the main channel and floodplains have been 

made finer than other parts of flume cross section. Along the flume, 

because of simple geometry, coarse grids with 0.2 m spaces have been 

used. Details of gridding are shown plotted in Table 1 and Figs. 5. As 
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seen in Table 1 the maximum and minimum size of the elements in the 

main channel and on the floodplains are 0.006 m and 0.002 m, 

respectively. To make sure that the flow field in the numerical model is 

fully developed, 7 m has been added to the flume length.  

 

4.2. Boundary conditions 

 

The solution of flow field was carried out using ANSYS-CFX 

software with three turbulence models and an iteration procedure with 

accuracy of 1×10-8. The boundary conditions are as follow: (a) uniform 

velocity distribution at the flume inlet, (b) hydrostatics pressure 

condition at the outlet, (c) smooth solid wall with no slip condition in the 

main channel and on the floodplains walls and beds, and (d) free 

surface condition on the water surface.  

 

  

(b) (a) 

Fig. 5. Details of gridding in section; (a) coarse mesh, (b) fine mesh. 

 

 

Table1. Details of gridding for fine mesh. 
 

Element Number of elements  Max. mesh spacing (m) Min. mesh spacing (m) 

A 70 0.006 0.002 

B 10 0.006 0.002 

C Depend on width  0.006 0.002 

D Depend on water depth 0.006 0.002 

 

5. Results 

5.1. Velocity distributions 

 

To study the effects of flume geometry on flow field, the stream wise 

depth-averaged velocity in prismatic compound channel with four 

different floodplain widths and 12 discharges (Q=12 1/s, 15, 18, 21, 24, 

27, 30, 35, 40, 45 and 50 1/s) were modeled using EARSM, 

and Eddy Viscosity Transport turbulence models.  

The results of depth averaged-velocity modeled by ANSYS-CFX for 

two discharges of 24 1/s and 45 l/s are shown in Figs. 6 and 7. As seen 

in figures the  and Eddy (e.g. Eddy Viscosity Transport Equation) 

models are able to predict the depth-averaged velocity distribution, 

quite well, especially in the main channel. In addition, it is clear that the 

EARSM model cannot predict maximum velocity in the middle of 

main channel. Figures also show that, in general, by increasing 

discharges and floodplain widths the discrepancy between the 

experimental and numerical data decrease. The streamwise velocity 

predicted by the k-and Eddy Viscosity Transport turbulence models 

are shown in Figs 8(a), 8(b) and Figs.  8(e), 8(f), respectively. These 

turbulence models do not produce secondary flow, and accordingly its 

influence is not reflected in stream wise velocity contours. In order to 

study the effects of floodplain widths and discharges on flow: 
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       (17) 

The mean absolute percentage error (MAPE) of depth average velocity 

for two discharge of, Q=24 1/s and 45 1/s are also calculated using 

equation (17) and shown in Table 2. As seen in Table 2 the mean 

absolute percentage errors for three turbulence models are, usually, 

less than 8 percent. In which Wdexp is experimental point depth-

averaged velocity, Wdmes is numerical depth-averaged velocity and n is 

the number of data The streamwise velocity distribution for 

experimental cases of OPC100-45 and OPC200-45 are also modeled 

by three turbulence models and shown plotted in Figs. 8. The figures 

indicate that, all turbulence models are able to predict velocity 

distribution fairly well. The bulging of the isovels towards the main 

channel from the floodplain edges in Figs. 8(c) and 8(d) are 

characteristic of flows where the secondary currents are present. field, 

the depth-averaged velocity distribution has been normalized. The 

average velocity in the whole cross section has been used for 

normalization (see Figs. 9). As seen in the Fig. 9(a), for experimental 

tests of OPC100-24 and OPC400-24 the normalized velocities on the 

floodplains are almost the same, while in the main channel the 

discrepancy between the results of two experimental series are 

apparent. This fact indicates that for discharge of 24 1/s by increasing 

floodplain width from 100 mm to 400mm, the interaction between the 
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main channel and floodplains increases. As discharge increases from 

24 1/s to 45 1/s, the difference between normalized velocity in the main 

channel and floodplain decrease which means the less interaction 

between those subsections (see Fig. 9(b)). 

 

 

 

(a) OPC100-24 

 

(b) OPC200-24 

 

(c) OPC300-24 

 

(d) OPC400-24 

Fig. 6. Depth–averaged velocity distribution in prismatic compound channels with different floodplain widths and Q = 24 l/s. 

 

 

 

(a) OPC100-45 

 

(b) OPC200-45 

 

(c) OPC300-45 

 

(d) OPC400-45 

Fig. 7. Depth–averaged velocity distribution in prismatic compound channels with different floodplain widths and Q = 45 l/s. 
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Table 2. The mean absolute percentage error (MAPE) of depth average velocity for three turbulence model; a) Q=24 l/s, b) Q=45 l/s. 

 a) Q=24 l/s  

Experimental      EARSM  Eddy 

OPC100   5.18   6.65   5.91 
OPC200   5.15   6.21   13.68 
OPC400   7.23   6.91   7.89 

 

b) Q=45 l/s 

Experimental      EARSM  Eddy 

OPC100   5.22   3.52   5.80 
OPC200   5.93   4.23   6.34 
OPC400   5.00   4.77   5.28 

 

 

 

 

 

(a) OPC100-45 (model) 

 

(b) OPC200-45 (model) 

 

(c) OPC100-45  EARSM model) 

 

(d) OPC200-45 ( EARSM model) 
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(e) OPC100-45 (Eddy model) 

 

(f) OPC200-45 (Eddy model) 

Fig. 8. Streamwise velocity Distribution simulated using turbulence models for experimental series of OPC100-45 and OPC200-45 (a, b) 

, (c, d)  EARSM, and (e, f) Eddy Viscosity Transport Equation. 

 

 
 

(a) 
(b) 

Fig. 9. A comparison between experimental and numerical normalized depth-averaged velocity for two 
experimental series of OPC100 and OPC400; (a) Q=24 l/s, (b) Q=45 l/s 

5.2. Boundary shear stress distributions  

 

Boundary shear stress distribution is another important parameter 

in river engineering when studying sediment transport and riverbank 

protection. It also is important for river modelers when calibrating a 

mathematical model, which commonly requires numerical values of 

resistance coefficients. The boundary shear stress distributions 

calculated using the three turbulence models. The results of numerical 

modeling were then compared with experimental data (see Figs. 10). 

Figs. show that; (a) all three turbulence models always underestimate 

boundary shear stress on the floodplain, (b) discrepancy between 

numerical results and experimental data near the interface of main 

channel and floodplain, significantly, increase, (c) the k- turbulence 

model underestimates shear stress in the main channel, while the 

EDDY turbulence model overestimates it, (e) similar to depth-averaged 

velocity distributions, the k- EARSM turbulence model is not able to 

predict maximum shear stress in the main channel, (f) the k- EARSM 

model predicts two picks near the main channel walls which indicates 

the presence of strong secondary flow cells in this part of the flume. The 

mean absolute percentage error (MAPE) of shear stress for two 

discharge of, Q=24 l/s and 45 l/s are also calculated and shown in Table 

3. As seen in the table, among those turbulence models, the  

EARSM model has the minimum MAPE also by increasing floodplain 

widths and flow discharges the difference between the experimental 

and numerical data decrease. 

  

5.3. Secondary flow 

 

The secondary flow patterns for two floodplain widths (300 mm and 

400 mm) and discharges Q= 24 1/s and 45 l/s are simulated using 

EARSM turbulence model (see Fig. 11). The figures clearly show 

the effects of geometry and discharge on secondary flow pattern.  For 

the compound channel with 300 mm and 400 mm floodplain widths and 

discharge of 24 1/s, presence of one strong secondary flow cell in the 

main channel are clear, as the discharge raise to 45 1/s the number of 

secondary flow circulations increase to three cells, one cell in the main 

channel and two strong secondary flow cells near the interface between 

the main channel and floodplains. This emphasizes that two secondary 

flow cells interacted near the interface is responsible for pushing 

upwards particles with smaller velocities, causing the inflection of the 

isovel lines and increasing depth-averaged velocity and shear stress 

near the main channel walls. 
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(a) OPC100-45 

 

(b) OPC200-45 

 

(c) OPC300-45 

 

(d) OPC400-45 

Fig. 10. Shear stress distribution in prismatic compound channel with different floodplain widths and Q = 45 l/s. 

 

 

(a) OPC300-24 

 

(b) OPC400-24 

 

(c) OPC300-45 
 

(d) OPC400-45 

Fig. 11. Secondary current circulations predicted using  EARSM turbulence model in prismatic compound channels for two 
discharges of 24 l/s and 45 l/s.  
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Table 3. The mean absolute percentage error (MAPE) of shear stress distribution for three turbulence model; a) Q=24 l/s, b) Q=45 l/s. 

a) Q=24 l/s 

Experimental     EARSM  Eddy 

OPC100   17.87   12.17   22.23 
OPC200   14.94   10.48   33.55 
OPC400   19.50   12.51   18.77 

b) Q=45 l/s 

Experimental     EARSM  Eddy 

OPC100   16.81   6.77   19.88 
OPC200   16.09   8.88   16.50 
OPC400   14.36   6.69   13.42

 

 

6. Conclusions 

 

The velocity and boundary shear stress distributions in prismatic 

compound channels with different floodplain widths were numerical 

simulated using three turbulence models, including the ,  

EARSM and Eddy Viscosity Transport turbulence models. The results 

of numerical modeling were then compared with the experimental data.  

1. The depth-averaged velocity distribution predicted using three 

turbulence models are in good agreement with the experimental data. 

Comparing to the  and  EARSM models, the Eddy Viscosity 

Transport Equation turbulence model can predict the depth-averaged  

velocity reasonably well, especially in the main channel. Also by 

increasing the floodplain width, the divergence between numerical 

modeling and the experimental data decrease. 

2. To compare with depth-averaged velocity, the shear stress 

distribution predicted by the ,  EARSM and Eddy Viscosity 

Transport turbulence models are in less agreement with the 

experimental data. 

3. By increasing flow discharge (water depth) and floodplains width, the 

accuracy of three turbulence models improves.  

4. Among those three turbulence models, only the k-e EARSM are able 

to predict secondary flow cells in the main channel and floodplains. As 

a result of interaction between the secondary flow cells, the k-e EARSM 

turbulence model shows two local peaks in shear stress distributions 

near the main channel walls. 
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